学习TensorFlow中矩阵的操作对于理解计算图中数据的流动来说非常重要。
1、创建矩阵
可以使用numpy数组(或者嵌套列表来创建二维矩阵);也可以使用创建张量的函数(比如,zeros(),ones(),truncated_normal()等)来指定一个二维形状的矩阵;也可以使用diag()函数从一个一维数组(或者列表)来创建一个对角矩阵。
import tensorflow as tf
import numpy as np
sess = tf.Session()
identity_matrix = tf.diag([1.0, 1.0, 1.0])
A = tf.truncated_normal([2,3])
B = tf.fill([2, 3], 5.0)
C = tf.random_uniform([3,2])
D = tf.convert_to_tensor(np.array([[1.0, 2.0, 3.0], [-3.0, -7.0, -1.0], [0.0, 5.0, -2.0]]))
print(sess.run(identity_matrix))
#[[1.0, 0.0, 0.0]
# [0.0, 1.0, 0.0]
# [0.0, 0.0, 1.0]]
print(sess.run(A))
#[[0.96751703, 0.11397751, -0.3438891]
# [-0.10132604, -0.8432678, 0.29810956]]
print(sess.run(B))
#[[5.0, 5.0, 5.0]
# [5.0, 5.0, 5.0]]
print(sess.run(C))
#[[0.33184357, 0.08907614]
# [0.53189191, 0.067605299]
# [0.99889051, 0.67061249]]
print(sess