TensorFlow教程(四):矩阵操作

本文介绍了在TensorFlow中创建、操作矩阵的方法,包括矩阵加减、乘法、转置、行列式计算、逆矩阵求解及特征值分解等内容,并通过实例展示了如何使用TensorFlow的相关函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习TensorFlow中矩阵的操作对于理解计算图中数据的流动来说非常重要。

1、创建矩阵

可以使用numpy数组(或者嵌套列表来创建二维矩阵);也可以使用创建张量的函数(比如,zeros(),ones(),truncated_normal()等)来指定一个二维形状的矩阵;也可以使用diag()函数从一个一维数组(或者列表)来创建一个对角矩阵。

import tensorflow as tf
import numpy as np
sess = tf.Session()

identity_matrix = tf.diag([1.0, 1.0, 1.0])
A = tf.truncated_normal([2,3])
B = tf.fill([2, 3], 5.0)
C = tf.random_uniform([3,2])
D = tf.convert_to_tensor(np.array([[1.0, 2.0, 3.0], [-3.0, -7.0, -1.0], [0.0, 5.0, -2.0]]))


print(sess.run(identity_matrix))
#[[1.0, 0.0, 0.0]
# [0.0, 1.0, 0.0]
# [0.0, 0.0, 1.0]]

print(sess.run(A))
#[[0.96751703, 0.11397751, -0.3438891]
# [-0.10132604, -0.8432678, 0.29810956]]

print(sess.run(B))
#[[5.0, 5.0, 5.0]
# [5.0, 5.0, 5.0]]

print(sess.run(C))
#[[0.33184357, 0.08907614]
# [0.53189191, 0.067605299]
# [0.99889051, 0.67061249]]

print(sess
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值