lim[(n!)^(1/n)]/n的极限

求如下极限 lim ⁡ n → + ∞ n ! n n  式  ( 1 ) \lim\limits _{n \rightarrow +\infty} \frac{\sqrt[n]{n !}}{n} \text { 式 }(1) n+limnnn!   (1)
对式①取对数得
lim ⁡ n → + ∞ ln ⁡ n ! n n n = 1 n lim ⁡ n → + ∞ ln ⁡ n ! n n = 1 n lim ⁡ n → + ∞ ( ln ⁡ n n + ln ⁡ n − 1 n + ⋯ + ln ⁡ 1 n ) = 1 n lim ⁡ n → + ∞ ∑ i = 1 n ln ⁡ i n  式(2) \begin{aligned} &\lim _{n \rightarrow +\infty} \ln \sqrt[n]{\frac{n !}{n^{n}}}\\ &=\frac{1}{n} \lim _{n \rightarrow +\infty} \ln \frac{n !}{n^{n}}\\ &=\frac{1}{n} \lim _{n \rightarrow +\infty}\left(\ln \frac{n}{n}+\ln \frac{n-1}{n}+\cdots+\ln \frac{1}{n}\right)\\ &=\frac{1}{n} \lim _{n \rightarrow +\infty} \sum_{i=1}^{n} \ln \frac{i}{n} \text { 式(2)} \end{aligned} n+limlnnnnn! =n1n+limlnnnn!=n1n+lim(lnnn+lnnn1++lnn1)=n1n+limi=1nlnni (2)
由定积分定义得式②
= ∫ 0 1 ln ⁡ x d x = x ln ⁡ x ∣ 0 1 − ∫ 0 1 x d ln ⁡ x = [ x ln ⁡ x − x ] 0 1 = − 1 \begin{aligned} &=\int_{0}^{1} \ln x d x\\ &=\left.x \ln x\right|_{0} ^{1}-\int_{0}^{1} x d \ln x \\ &=[x \ln x-x]_{0}^{1}=-1 \end{aligned} =01lnxdx=xlnx0101xdlnx=[xlnxx]01=1
lim ⁡ n → + ∞ ln ⁡ n ! n n n = − 1 \lim\limits _{n \rightarrow +\infty} \ln \sqrt[n]{\frac{n !}{n^{n}}}=-1 n+limlnnnnn! =1
⇒ lim ⁡ n → + ∞ n ! n n = 1 e \Rightarrow \lim\limits _{n \rightarrow +\infty} \frac{\sqrt[n]{n !}}{n}=\frac{1}{e} n+limnnn! =e1

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值