求如下极限
lim
n
→
+
∞
n
!
n
n
式
(
1
)
\lim\limits _{n \rightarrow +\infty} \frac{\sqrt[n]{n !}}{n} \text { 式 }(1)
n→+∞limnnn! 式 (1)
对式①取对数得
lim
n
→
+
∞
ln
n
!
n
n
n
=
1
n
lim
n
→
+
∞
ln
n
!
n
n
=
1
n
lim
n
→
+
∞
(
ln
n
n
+
ln
n
−
1
n
+
⋯
+
ln
1
n
)
=
1
n
lim
n
→
+
∞
∑
i
=
1
n
ln
i
n
式(2)
\begin{aligned} &\lim _{n \rightarrow +\infty} \ln \sqrt[n]{\frac{n !}{n^{n}}}\\ &=\frac{1}{n} \lim _{n \rightarrow +\infty} \ln \frac{n !}{n^{n}}\\ &=\frac{1}{n} \lim _{n \rightarrow +\infty}\left(\ln \frac{n}{n}+\ln \frac{n-1}{n}+\cdots+\ln \frac{1}{n}\right)\\ &=\frac{1}{n} \lim _{n \rightarrow +\infty} \sum_{i=1}^{n} \ln \frac{i}{n} \text { 式(2)} \end{aligned}
n→+∞limlnnnnn!=n1n→+∞limlnnnn!=n1n→+∞lim(lnnn+lnnn−1+⋯+lnn1)=n1n→+∞limi=1∑nlnni 式(2)
由定积分定义得式②
=
∫
0
1
ln
x
d
x
=
x
ln
x
∣
0
1
−
∫
0
1
x
d
ln
x
=
[
x
ln
x
−
x
]
0
1
=
−
1
\begin{aligned} &=\int_{0}^{1} \ln x d x\\ &=\left.x \ln x\right|_{0} ^{1}-\int_{0}^{1} x d \ln x \\ &=[x \ln x-x]_{0}^{1}=-1 \end{aligned}
=∫01lnxdx=xlnx∣01−∫01xdlnx=[xlnx−x]01=−1
即
lim
n
→
+
∞
ln
n
!
n
n
n
=
−
1
\lim\limits _{n \rightarrow +\infty} \ln \sqrt[n]{\frac{n !}{n^{n}}}=-1
n→+∞limlnnnnn!=−1
⇒
lim
n
→
+
∞
n
!
n
n
=
1
e
\Rightarrow \lim\limits _{n \rightarrow +\infty} \frac{\sqrt[n]{n !}}{n}=\frac{1}{e}
⇒n→+∞limnnn!=e1
lim[(n!)^(1/n)]/n的极限
最新推荐文章于 2021-11-05 20:42:14 发布