POJ 1730 Perfect Pth Powers(素数筛选法)

Perfect Pth Powers

题目链接:

http://poj.org/problem?id=1730

解题思路:

题目大意:

求使得 x = b^p成立时最大的p。

算法思想:

对x进行素数分解,即有x=a1^k1*a2^k2*…*ai^ki*… 其中ai均是素数,易知所有素数的指数ki的最大公约数即是题目所求。

坑点:n可以是负数。。。而且最后结果是偶数,显然是不可能的(一个数的偶次方怎么可能是负数),此时要不断将结果减半,直

到为奇数为止。

举例:64对应的结果应该是6,-64计算后也是6,显然不可能,应该为3,即(-4)^3=-64

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;

const int N = 100005;
int vis[N+5];//这里必须要加一个非0数,不明觉厉
vector<int> prime;

void get_prime(){
    prime.clear();
    memset(vis,0,sizeof(vis));
    for(int i = 2; i < N; ++i){
        int t = N/i;
        for(int j = 2; j <=t; ++j)
            vis[i*j] = 1;
    }
    for(int i = 2; i < N; ++i){
        if(!vis[i])
            prime.push_back(i);
    }
}

int gcd(int a,int b) {
    if(b == 0)
        return a;
    else
        return gcd(b,a%b);
}

int main(){
    get_prime();
    int n;
    while(scanf("%d",&n),n) {
        int len = prime.size();
        int cnt,ans = -1;
        for(int i = 0; i < len; ++i){
            if(n%prime[i] == 0){
                cnt = 0;
                while(n%prime[i] == 0){
                    n /= prime[i];
                    cnt++;
                }
                if(ans == -1)
                    ans = cnt;
                else
                    ans = gcd(ans,cnt);
            }
        }
        if(ans == -1)
            ans = 1;
        if(n < 0){
            while(ans % 2 == 0)
                ans = ans/2;
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值