import tensorflow as tf
import numpy as np
import PIL.Image
from io import BytesIO
from IPython.display import Image, display
def DisplayFractal(a, fmt = 'jpeg'):
a_cyclic = (6.28 * a / 20.0).reshape(list(a.shape) + [1])
img = np.concatenate([10+20*np.cos(a_cyclic), 30+50*np.sin(a_cyclic), 155-80*np.cos(a_cyclic)], 2)
img[a==a.max()] = 0a = img
a = np.uint8(np.clip(a, 0, 255))
f = BytesIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
sess = tf.InteractiveSession()
# Use NumPy to create a 2D array of complex numbers
Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]Z = X+1j*Y
xs = tf.constant(Z.astype(np.complex64))
zs = tf.Variable(xs)
ns = tf.Variable(tf.zeros_like(xs, tf.float32))
tf.initialize_all_variables().run()
# Compute the new values of z: z^2 + x
zs_ = zs*zs + xs
# Have we diverged with this new value?
not_diverged = tf.abs(zs_) < 4
# Operation to update the zs and the iteration count.
## Note: We keep computing zs after they diverge! This
# is very wasteful! There are better, if a little
# less simple, ways to do this.
step = tf.group(zs.assign(zs_),ns.assign_add(tf.cast(not_diverged, tf.float32)))
for i in range(200):
step.run()
DisplayFractal(ns.eval())