Delaunay三角剖分及matlab实例

鉴于Delaunay三角剖分在点云拟合方面有不错的应用,现对该算法的原理进行简单的汇总~

----------------------------原理部分------------------------

点集的三角剖分(Triangulation),对数值分析(如有限元分析)以及图形学来说,都是极为重要的预处理技术。尤其是Delaunay三角剖分,关于点集的很多种几何图都和Delaunay三角剖分相关,如Voronoi图,EMST树等。Delaunay三角剖分有最大化最小角“最接近于规则化的“的三角网和唯一性(任意四点不能共圆)两个特点。Delaunay三角剖分是变现三维形状的基础。可以通过这个物体的投影来建立二维视觉图,并用二维Delaunay三角剖分来分析识别该物体,或者将它与实物相比较。Delaunay剖分是连接计算机视觉与计算机图形学的桥梁。以下内容参考:http://www.cnblogs.com/RenLiQQ/archive/2008/02/06/1065399.html

1、三角剖分与Delaunay剖分的定义

如何把一个离散几何剖分成不均匀的三角形网格,这就是离散点的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项处理技术。该问题图示如下:

1.1 三角剖分定义

【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段,E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件:
1、除了端点,平面图中的边不包含点集中的任何点。
2、没有相交边。//边和边没有交叉点

3、平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。

//凸包的概念用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点。

1.2 Delaunay三角剖分的定义

在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起:
【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b亮点,圆内(注意是园内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。
【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。

1.3 Delaunay三角剖分的准则

要满足Delaunay三角剖分的定义,必须符合两个重要的准则:
1、空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在。如下图所示:

2、最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。从这个意义上讲,Delaunay三角网是“最接近于规则化的”三角网。具体的说是在两个相邻的三角形构成凸四边形的对角线,在相互交换后,两个内角的最小角不再增大。如下图所示:

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值