CCF 碰撞的小球
问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
源代码
#include <stdio.h>
int main()
{
int n,L,t;
int a[110];
int flag[110]= {0}; //0是正方向
scanf("%d %d %d",&n,&L,&t);
int i,j,k,p,q,x,l;
for(i=0; i<n; i++) //初始状态是否在端点的判断,设定方向
{
scanf("%d",&a[i]);
if(a[i]==L) flag[i]=1;//在右端点则反方向,向左
if(a[i]==0) flag[i]=0;//在左端点则正方向,向右
}
for(i=0; i<t; i++) //在t秒时间内,每一秒的变化
{
for(q=0; q<n; q++)
{
if(flag[q]==0) a[q]++;//正方向 加
else a[q]--;//反方向 减
}
for(j=0; j<n-1; j++) //相撞的判断
{
for(k=j; k<n-1; k++)
{
if(a[j]==a[k+1])//a[j]与后面所有的数字一一对比,看是否相撞
{
if(flag[j]==0) //只有flag方向相反才会相撞
{
flag[j]=1;
flag[k+1]=0;
}
else
{
flag[j]=0;
flag[k+1]=1;
}
}
}
}
for(p=0; p<n; p++) //是否在端点判断
{
if(a[p]==L) flag[p]=1;
//if(a[p]==0) flag[p]=-flag[p];
if(a[p]==0) flag[p]=0;
}
}
for(i=0; i<n; i++)
{
printf("%d ",a[i]);
}
return 0;
}