CCF 碰撞的小球 C语言 201803-2

该博客详细描述了CCF(中国计算机学会)提出的一个问题,即在一条偶数长度的线段上,多个小球碰撞的情况。小球在达到线段端点或碰撞时会改变方向并保持原速度。博客提供了问题描述、输入输出格式,并给出了一组样例输入和输出。
摘要由CSDN通过智能技术生成

CCF 碰撞的小球


问题描述

数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。

提示

因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。

输入格式

输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置

输出格式

输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。

样例输入

3 10 5
4 6 8

样例输出

7 9 9

源代码

#include <stdio.h>
int main()
{
    int n,L,t;
    int a[110];
    int flag[110]= {0}; //0是正方向
    scanf("%d %d %d",&n,&L,&t);
    int i,j,k,p,q,x,l;
    for(i=0; i<n; i++) //初始状态是否在端点的判断,设定方向
    {
        scanf("%d",&a[i]);
        if(a[i]==L) flag[i]=1;//在右端点则反方向,向左
        if(a[i]==0) flag[i]=0;//在左端点则正方向,向右
    }
    for(i=0; i<t; i++) //在t秒时间内,每一秒的变化
    {
        for(q=0; q<n; q++)
        {
            if(flag[q]==0) a[q]++;//正方向 加
            else a[q]--;//反方向 减
        }
        for(j=0; j<n-1; j++) //相撞的判断
        {
            for(k=j; k<n-1; k++)
            {
                if(a[j]==a[k+1])//a[j]与后面所有的数字一一对比,看是否相撞
                {
                    if(flag[j]==0)  //只有flag方向相反才会相撞
                    {
                        flag[j]=1;
                        flag[k+1]=0;
                    }
                    else
                    {
                        flag[j]=0;
                        flag[k+1]=1;
                    }
                }
            }
        }
        for(p=0; p<n; p++) //是否在端点判断
        {
            if(a[p]==L) flag[p]=1;
            //if(a[p]==0) flag[p]=-flag[p];
            if(a[p]==0) flag[p]=0;
        }

    }
    for(i=0; i<n; i++)
        {
            printf("%d ",a[i]);
        }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值