CCF第十三套第二题C语言版
(1)题目内容:
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示:
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
(2) 设计思路:
首先设置一个结构体数组,包含每一个小球的位置信息,sum表示小球的位置,flag标记小球的方向。最外面的循环表示时间,每1秒循环一次,进入循环,首先判断小球是否位于端点,假如是,flag为flag的相反数(变换方向),然后判断两个小球是否相撞(即位置相同,方向相反),则两个小球的方向改变(flag变为其相反数),然后看这一秒,小球如何运动,即s[i].sum=s[i].sum+s[i].flag。最后输出每一个元素即可。
(3) 源文件代码:
#include <stdlib.h>
#include <stdio.h>
struct stu{
int sum;
int flag;
};
int main()
{
int n,L,t,i,j,k;
stu s[100];
scanf("%d %d %d",&n,&L,&t);
for(i=0;i<n;i++)
{
scanf("%d",&s[i].sum);
s[i].flag=1;
}
for(j=1;j<=t;j++)
{
for(i=0;i<n;i++)
{
if(s[i].sum== L)s[i].flag=-1;
if(s[i].sum== 0)s[i].flag=1;
}
for(i=0;i<n;i++)
{
for(k=i;k<n;k++)
if(s[i].sum==s[k].sum&&s[i].flag!=s[k].flag)
{
s[i].flag=(-1)*s[i].flag;
s[k].flag=(-1)*s[k].flag;
}
}
for(i=0;i<n;i++)
s[i].sum=s[i].sum+s[i].flag;
}
for(i=0;i<n;i++)
printf("%d ",s[i].sum);
printf("\n");
}
运行结果: