PMSM弱磁控制

        近年来,不论是时代的发展抑或国家新政策,新能源电动汽车被推向了风口浪尖,着实火了一把。说到电动汽车,其最为关键部分就是动力系统部分,而动力系统部分最为关键不外乎电机与电驱这两大部件。永磁同步电机(PMSM)凭借着其功率密度高、可靠性高、效率高等特性逐步取代异步电机在电动车上得到了广泛的应用。而说到PMSM不得不提的就是其弱磁扩速特性。


       由于逆变器直流侧电压达到最大值后会引起电流调节器的饱和, 为了获得较宽的调速范围,在基速以上高速运行时实现恒功率调速,需要对电动机进行弱磁控制。PMSM 弱磁控制的思想源自他励直流电动机的调磁控制,当他励直流电动机端电压达到最大电压时,只能通过降低电动机的励磁电流, 改变励磁磁通,在保证电压平衡的条件下,使电动机能恒功率运行于更高的转速。也就是说,他励直流电动机可以通过降低励磁电流达到弱磁扩速的目的。对于 PMSM 而言,励磁磁动势因永磁体产生而无法调节,只能通过调节定子电流,即增加定子直轴去磁电流分量来维持高速运行时电压的平衡,达到弱磁扩速的目的。

在弱磁控制过程中,往往因为控制的不同,会对逆变器电流电压进行轨迹的控制,如图1-1所示,需要同时满足电流极限圆控制和电压极限椭圆控制。什么是电流极限圆呢,通过对电流进行3/2静止坐标系变换和2/2旋转坐标系变换后定子电流被分配到d轴和q轴上,所以i_{s}^{2}=i_{d}^{2}+i_{q}^{2}<=i_{lim}^{2},故电流矢量轨迹便是以原点为圆心的圆。而电压极限椭圆因PMSM在稳态时同时忽略定子电阻的情况下需满足电压方程: 
\left\{\begin{matrix}u_{_{d}}=-\omega_{_{e}}L_{_{e}}i_{_{q}} \\ u_{_{q}}=-\omega_{_{e}}L_{_{e}}i_{_{d}}+\omega_{_{e}}\psi _{_{f}} \end{matrix}\right.

同时电压又会收到逆变器最大输出限制,Us^2=Ud^2+Uq^2<=Ulim^2,将两者联立,化简为圆心在(-\psi _{f}/L _{d},0),半径为u_{lim}/(L_{0}\omega )的圆方程:

i_{q}^{2}+(i_{d}+\psi _{f}/L_{0})^{2}=[u_{lim}/(L_{0}\omega)]^{2}

\omega为电机转速,随着转速增大,半径变小,椭圆变小。

当电动机反电动势达到逆变器输出电压的极限时,即u_{s}=u_{lim},继续升高转速则只能靠调节i_{d}i_{q} 来实现,这就是电动机的“弱磁”运行方式。增加直轴去磁电流分量
i_{d} 和减小交轴电流分量i_{q},以维持电压平衡,从而得到弱磁效果。但是为确保相电流不超过极限值,应保证弱磁控制时增加i_{d}的同时必须相应减小i_{q} 

拿上面表贴式永磁机矢量图为例:在A1点转速在\omega _{1}(此时转速为转折速度)此时电流达到最大,转矩也相应达到最大,此时再增加电流会导致调节器饱和,对电机和电控都有损害,若想升速到\omega _{2},此时两个轨迹相交于B点,从B点到C点时,此时电流增大,转矩也相应增大,功率也有所增大。若此时继续升速,则轨迹点会从C点下移到A2点,此时转矩下降,功率保持恒定。在这个过程中,由B-C-A2的过程中d轴负半轴一直在增大即d轴去磁电流增大从而使得电机可以在达到转折速度后继续升高转速但是却是以降低转矩作为代价从而达到弱磁扩速目的。

上述整个过程其实就是电机弱磁控制过程,在满足电压极限椭圆和电流极限圆的过程中,控制d轴和q轴电流分量使得电流调节器不至于失控,使得电机可以稳定的运行在高速弱磁状态下。

PS:弱磁策略往往用在电机转速超过转折速度后的控制策略,而电机在低速区时往往采用最大转矩电流比控制。 

 

### 关于PMSM控制模型的实现方法 #### 控制概述 永同步电机(PMSM)在高速运行时会遇到定子绕组反电动势过高的问题,这可能导致逆变器输出电压饱和。为了克服这一挑战并扩展速度范围,通常采用控制技术[^2]。 #### 控制策略 控制主要依赖两种核心控制策略: - **场定向控制(FOC)**:该方法通过对d轴和q轴电流分别独立控制来解耦电转矩与链之间的关系,从而精确调整电机内部场强度。 - **最大转矩每安培(MTPA)**:此策略旨在优化效率,在低速区域能够提供最大的扭矩输出;而在高速区域,则通过适当减少励电流以防止直流母线电压过高而进入状态。 #### SVPMW算法的应用 对于具体实现方面,《PMSM同步电机控制的SVPMW算法仿真及实现分析》一文中提到的空间矢量脉宽调制(SVPMW)是一种有效的手段。这种方法不仅能够有效降低谐波失真率,还能显著提升系统的动态响应特性以及稳定性。实验结果显示其具有良好的跟踪效果和平滑的输出波形[^1]。 #### FPGA平台上的实践案例 《用FPGA实现永同步电机控制》介绍了如何利用现场可编程门阵列(FPGA)硬件加速器来进行实时计算密集型任务处理,如坐标变换、PI调节等操作,进而完成整个闭环控制系统的设计。这种方案具备高精度与时效性的优势,适合应用于工业自动化领域中的高性能伺服驱动场合。 ```matlab % MATLAB/Simulink环境下构建简单版PMSM控制器框架示例代码 function dxdt = pmsm_weak_magnetism(t,x,u,flag) persistent J b Ke Kt R L q0 d0; if isempty(J), % 初始化参数 J=0.01; % 转动惯量[kg.m^2] b=0.1; % 阻尼系数[N.m.s/rad] Ke=0.09; % 反电势常数[V/(rad/s)] Kt=Ke; % 扭矩常数[N.m/A] R=1.0; % 定子电阻[Ω] L=0.003; % 自感[H] end switch flag, case 0,% 计算微分方程右侧表达式 w=x(1); i_d=x(2);i_q=x(3); u_d=u(1);u_q=u(2); di_dt=(u_d-Ke))/L; dw_dt=(Kt*i_q-b*w-T_load(x,w))/J; dxdt=[dw_dt;di_dt;dq_dt]; otherwise error(['Unknown flag ',num2str(flag)]); endswitch ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值