dijkstra算法模版,基本思路

首先需要注意的是dijkstra算法只能用来求正权无环图的最短路

模版一

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

稠密图使用朴素Dijkstra,dist表示起点到该点距离,st是维护一个(确没确定已经是最短距离的)集合,dijkstra重点在于去找一个离起点最近的点再用它向后更新,并且根据贪心可以确定它已经是最短距离的一部分了

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 510;
int g[N][N], dist[N], st[N], n, m;

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for(int i=0;i<n;i++)
    {
        // 想找一个不在集合中最短距离的点
        int t = -1;
        for(int j=1;j<=n;j++)
        {
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        }
        st[t] = true;
        // 更新距离
        for(int j=1;j<=n;j++)
        {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(g, 0x3f, sizeof g);
    int a, b, c;
    while(m--)
    {
        scanf("%d%d%d", &a, &b, &c);
        // 防止重边
        g[a][b] = min(g[a][b], c);
    }
    printf("%d", dijkstra());
    return 0;
}
模版二

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围
1≤n,m≤1.5×105,
图中涉及边长均不小于 0,且不超过 10000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3
稀疏图用堆优化的dijkstra,维护一个小根堆,注意first是distance,因为优先队列按第一个进行排序,堆优化的点在于优化了找离起点最近的点的这一步

#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;

typedef pair<int, int> PII;
const int N = 1.5e5 + 10;
int h[N], e[N], ne[N], idx;
int n, m, w[N], dist[N];
bool st[N];
priority_queue<PII, vector<PII>, greater<PII>> q;

void add(int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    q.push({0, 1});
    while(q.size())
    {
        PII t = q.top();
        q.pop();
        int ver = t.second, d = t.first;
        if(st[ver]) continue;
        st[ver] = true;
        for(int i=h[ver];i!=-1;i=ne[i])
        {
            int node = e[i];
            if(dist[node] > d + w[i])
            {
                dist[node] = d + w[i];
                q.push({dist[node], node});
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    int a, b, c;
    memset(h, -1, sizeof h);
    while(m--)
    {
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    printf("%d\n", dijkstra());
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Dijkstra算法是一种用于解决带权图的单源最短路径问题的贪心算法。它维护一个距离起点的最短路径已知的顶点集合,通过不断地扩展这个集合,最终得到从起点到所有顶点的最短路径。 Dijkstra算法的基本思想是,维护一个集合S,表示已经求出最短路径的顶点集合。一开始,S只包含起点。然后,每次从集合V-S中选取一个距离起点最近的顶点u,将其加入集合S中,并更新与u相邻的所有顶点的最短路径。 具体实现上,我们可以使用一个数组dis[]来存储每个顶点到起点的最短路径长度,数组vis[]表示该顶点是否已经被加入到集合S中。每次选取距离起点最近的顶点u后,我们遍历u的所有邻居v,并更新dis[v]的值,如果dis[v]发生了改变,我们就将v加入到一个优先队列中,等待下一次选择。 以下是Dijkstra算法的伪代码实现: ``` int n; // 顶点数 int dis[N]; // 存储起点到每个顶点的最短距离 bool vis[N]; // 标记每个顶点是否已经加入集合S中 vector<pair<int, int>> adj[N]; // 存储每个顶点的邻居 void dijkstra(int s) { // s为起点编号 memset(dis, 0x3f, sizeof dis); // 将dis数组初始化为无穷大 dis[s] = 0; // 起点到自身的距离为0 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; q.push({0, s}); // 将起点加入队列中 while (!q.empty()) { auto t = q.top(); q.pop(); int u = t.second; if (vis[u]) continue; // 如果该点已经在集合S中,直接跳过 vis[u] = true; // 将u加入集合S中 for (auto [v, w] : adj[u]) { // 遍历u的所有邻居 if (dis[v] > dis[u] + w) { // 如果从u到v的距离更短 dis[v] = dis[u] + w; // 更新dis数组 q.push({dis[v], v}); // 将v加入队列中 } } } } ``` 其中,priority_queue是一个优先队列,用于存储待选顶点。我们使用了STL中的pair来表示顶点与其到起点的距离。优先队列默认按照pair的第一个元素排序,因此我们需要自定义一个比较函数,将pair按照第二个元素(距离)排序。 Dijkstra算法的时间复杂度为O(ElogV),其中E为边数,V为顶点数。在实际应用中,Dijkstra算法的效率很高,能够处理大规模的图。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值