研习代码 day48 | 动态规划——终极子序列问题(编辑距离)

一、两个字符串的删除操作

        1.1 题目

        给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

        每步 可以删除任意一个字符串中的一个字符。

示例 1:

输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"

示例  2:

输入:word1 = "leetcode", word2 = "etco"
输出:4

提示:

  • 1 <= word1.length, word2.length <= 500
  • word1 和 word2 只包含小写英文字母

        1.2 题目链接

        583.两个字符串的删除操作

        1.3 解题过程和过程想法

        (1)解题过程

        通过最长公共子序列求最少的删除操作:先求出最长公共子序列,再用两串的总长度-2*最长公共子序列长度,即得到最少需删除操作的次数
        分析:当前的匹配情况会受到之前元素的情况所影响,且影响的方式是类似的,考虑采用动态规划的策略。
        # 数组:以i-1为结尾的word1字符串与以j-1为结尾的word2中最长公共子序列长度为dp[i][j]
        # 递推关系:若二者元素相匹配,当前情况取决于 用或不用 当前的元素,
                                  dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                             若二者元素不匹配,当前情况的结果与不用当前元素的情况相同
                                  dp[i][j] = dp[i-1][j]

图片来源:代码随想录,红色文字是自己加的


        # 初始化:由上述递推关系可知当前位置的填写是基于左上方和正上方的元素,所以需要提前对首行首列进行初始赋值
                                dp[0][j] = 0         # 首行:没有母串,直接赋值 0
                                dp[i][0] = 1         # 首列:没有子串,即空子串,赋值1

        直接迭代当前最少的删除操作:
        
当前的匹配情况会受到之前元素的情况所影响,且影响的方式是类似的,考虑采用动态规划的策略。
        # 数组:以i-1为结尾的word1字符串与以j-1为结尾的word2中最少需删除的长度为dp[i][j]
                dp = [[0]*(n+1) for _ in range(m+1)]

        # 递推关系:若两指针所指元素相同,更新当前数组值不需删除,即不更新 dp[i][j] = dp[i-1][j-1]
                             否则更新当前位置 dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1],dp[i-1][j-1]+2)
注:不等时有三种情况——删第一个串中的元素,删第二个串中的元素,同时删除两个串中的元素
        # 初始化:因为当前位置的值由左上、正上方、左方推导,所以初始化首行首列
                            dp[0][j] = j    # 其中一个是空串,另一个串长度为 j 时,需删 j 个位置
                            dp[i][0] = i    # 其中一个是空串,另一个串长度为 i 时,需删 i 个位置

        (2)过程想法

        由于第一次做此类题目,第一种解法最先想到,后者是现学的

        1.4 代码

        1.4.1 通过最长公共子序列求最少的删除操作
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        # 数组:以i-1为结尾的word1字符串与以j-1为结尾的word2中最长公共子序列长度为dp[i][j]
        dp = [[0]*(n+1) for _ in range(m+1)]

        # 递推关系:因为判断的不一定是连续的情况,直接迭代,dp[i][j] = dp[i-1][j-1] + 1

 
        for i in range(1,m+1):
            for j in range(1,n+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])

        return m+n-2*dp[m][n]
        1.4.2 直接迭代当前最少的删除操作
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        # 数组:以i-1为结尾的word1字符串与以j-1为结尾的word2中最少需删除的长度为dp[i][j]
        dp = [[0]*(n+1) for _ in range(m+1)]

        # 递推关系:若两指针所指元素相同,更新当前数组值不需要删除,即不更新 dp[i][j] = dp[i-1][j-1];
        # 否则更新当前位置 dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1],dp[i-1][j-1]+2)

        # 初始化:因为当前位置的值由左上、正上方、左方推导,所以初始化首行首列
        for j in range(n+1):
            dp[0][j] = j    # 其中一个是空串,另一个串长度为 j 时,需删 j 个位置
        for i in range(m+1):
            dp[i][0] = i    # 其中一个是空串,另一个串长度为 i 时,需删 i 个位置

        for i in range(1,m+1):
            for j in range(1,n+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    # 不等时有三种情况:删第一个串中的元素,删第二个串中的元素,同时删除两个串中的元素
                    dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+2)

        return dp[m][n]

二、编辑距离

        2.1 题目

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

        2.2 题目链接

        72.编辑距离

        2.3 解题过程和过程想法

        (1)解题过程        

        分析:当前的匹配情况会受到之前元素的情况所影响,且影响的方式是类似的,考虑采用动态规划的策略。
        # 数组:以i-1为结尾的word1字符串与以j-1为结尾的word2中最少需操作的次数为dp[i][j]
                dp = [[0]*(n+1) for _ in range(m+1)]

        # 递推关系:若两指针所指元素相同,更新当前数组值不需操作,即不更新 dp[i][j] = dp[i-1][j-1]
                             否则更新当前位置 dp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+1)
               注:不等时有三种操作:删长串中的元素,增加短串中的元素,替换一个串中的元素
        # 初始化:因为当前位置的值由左上、正上方、左方推导,所以初始化首行首列
                            dp[0][j] = j    # 其中一个是空串,另一个串长度为 j 时,需操作 j 个位置
                            dp[i][0] = i    # 其中一个是空串,另一个串长度为 i 时,需操作 i 个位置

        (2)过程想法

        解题思路与上一题类似,只是可操作的细节略有不同

        2.4 代码

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        # 数组:以i-1为结尾的word1字符串与以j-1为结尾的word2中最少需操作的次数为dp[i][j]
        dp = [[0]*(n+1) for _ in range(m+1)]

        # 递推关系:若两指针所指元素相同,更新当前数组值不需要操作,即不更新 dp[i][j] = dp[i-1][j-1];
        # 否则更新当前位置 dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1)

        # 初始化:因为当前位置的值由左上、正上方、左方推导,所以初始化首行首列
        for j in range(n+1):
            dp[0][j] = j    # 其中一个是空串,另一个串长度为 j 时,需操作 j 个位置
        for i in range(m+1):
            dp[i][0] = i    # 其中一个是空串,另一个串长度为 i 时,需操作 i 个位置

        for i in range(1,m+1):
            for j in range(1,n+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    # 不等时有三种操作:删长串中的元素,增加短串中的元素,同替换一个串中的元素
                    dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1)

        return dp[m][n]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值