DB-GPT安装部署使用初体验

DB-GPT是一个开源框架,通过集成多种技术如SMMF、Text2SQL优化等,简化大模型在数据库应用中的开发,支持数据处理、问答、RAG等功能,适用于数据3.0时代的高效应用构建。它强调隐私安全和模型管理,提供多种交互方式如数据库对话和Excel支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DB-GPT是什么?引自官网:

DB-GPT是一个开源的AI原生数据应用开发框架(AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents)。
目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。
数据3.0 时代,基于模型、数据库,企业/开发者可以用更少的代码搭建自己的专属应用。

总而言之:基于大模型的数据集大成者的应用。

官网文档地址

功能

  • 私域问答&数据处理&RAG(Retrieval-Augmented Generation)
    支持内置、多文件格式上传、插件自抓取等方式自定义构建知识库,对海量结构化,非结构化数据做统一向量存储与检索
  • 多数据源&GBI(Generative Business Intelligence)
    支持自然语言与Excel、数据库、数仓等多种数据源交互,并支持分析报告。
  • 多模型管理
    海量模型支持,包括开源、API代理等几十种大语言模型。如LLaMA/LLaMA2、Baichuan、ChatGLM、文心、通义、智谱、星火等。
  • 自动化微调
    围绕大语言模型、Text2SQL数据集、LoRA/QLoRA/Pturning等微调方法构建的自动化微调轻量框架, 让TextSQL微调像流水线一样方便。
  • Data-Driven Multi-Agents&Plugins
    支持自定义插件执行任务,原生支持Auto-GPT插件模型,Agents协议采用Agent Protocol标准
  • 隐私安全
    通过私有化大模型、代理脱敏等多种技术保障数据的隐私安全

其他介绍详见官方文档

安装部署

参考源码部署

:如本地部署大模型,可离线下载后放置DB-GPT/models目录下。
考虑大家资源有限,此处介绍代理模式安装。
代理模式即各大大模型厂商提供的API接口,有免费的、限免的、付费的,大家酌情选择。
免费/限免的有:

  • 阿里系: https://dashscope.console.aliyun.com/billing
  • 科大讯飞:星火大模型,官网领取额度
    结论:通义千问qwen-turbo模型效果稍好点。
    有条件的可以上chat-gpt和智谱AI,效果更好。

参数配置

以通义千问为例。

  • 拷贝.env.template.env
  • 设置
LLM_MODEL=tongyi_proxyllm
# PROXYLLM_BACKEND = qwen-1.8b-chat (可选模型, 免费)
PROXYLLM_BACKEND = qwen-turbo
EMBEDDING_MODEL=text2vec
#通义千问
PROXY_SERVER_URL=https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
# Aliyun tongyi
TONGYI_PROXY_API_KEY=={自己申请的key}

启动

python ./dbgpt/app/dbgpt_server.py

启动成功:

INFO:     Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit)
2024-03-25 19:51:06 bogon dbgpt.model.adapter.proxy_adapter[1457] INFO Load model from params: 

=========================== ProxyModelParameters ===========================

model_name: tongyi_proxyllm
model_path: tongyi_proxyllm
proxy_server_url: https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
proxy_api_key: ********
proxy_api_base: None
proxy_api_app_id: None
proxy_api_secret: None
proxy_api_type: None
proxy_api_version: None
http_proxy: None
proxyllm_backend: qwen-turbo
model_type: proxy
device: cpu
prompt_template: None
max_context_size: 4096
llm_client_class: None

======================================================================

功能演练

地址:http://127.0.0.1:5000/
在这里插入图片描述

数据库配置

在这里插入图片描述
支持各大主流传统数据库、大数据库、KV数据库等。

功能清单

在这里插入图片描述
支持数据对话、数据库对话、Excel对话、知识库对话、报表分析、代理对话等。

数据对话

在这里插入图片描述
在这里插入图片描述

效果还行,单表查询不错。

数据库对话

在这里插入图片描述
效果一般,无法进行数据库连接操作。

Excel对话

在这里插入图片描述
上传Excel后,会进行初步的总结。

在这里插入图片描述
在这里插入图片描述
整体还行。

知识库对话

略。
常规操作。

报表分析

在这里插入图片描述
无法达到预期效果,应该和模型有关。
官方的一段话:数据对话对模型能力的要求相对较高,ChatGPT/GPT-4有较高的成功率。其他开源模型可以尝试Vicuna-13B。

其他功能

  • 模型管理
  • 应用开发
  • 插件开发
  • 智能体编排语言(AWEL) 这个看上去很6的样子

持续跟进。。。

### DBGPT 服务器概述 DBGPT 服务器作为支持深度学习模型运行的基础架构,其稳定性和性能至关重要。对于此类服务器而言,硬件资源如 CPU、GPU 和内存配置直接影响到服务的质量和效率[^1]。 ### 配置建议 针对 DBGPT 的服务器配置应考虑以下几个方面: - **CPU**:多核处理器能够有效提升数据处理速度,推荐选用具备高核心数的型号。 - **GPU**:鉴于深度学习训练对图形计算能力的需求较大,配备高性能 GPU 是必要的选择之一。 - **内存容量**:充足的 RAM 可以为大规模数据集提供缓存空间,减少磁盘读写频率从而提高整体运算效能。 - **存储设备**:快速 SSD 能够加速文件访问过程,在频繁加载大型预训练模型时尤为重要[^2]. ```bash # 查看当前系统的硬件信息 lscpu free -m df -h nvidia-smi ``` ### 部署流程 完成上述准备工作之后,则需按照既定计划实施软件环境搭建工作。这通常涉及操作系统安装、依赖库准备以及框架版本确认等多个环节。为了简化操作并确保一致性,可以利用容器化技术 Docker 来封装整个应用栈,实现一键部署的目标[^3]。 ```dockerfile FROM nvidia/cuda:11.0-base RUN apt-get update && \ apt-get install -y python3-pip git && \ pip3 install --upgrade pip setuptools wheel && \ rm -rf /var/lib/apt/lists/* WORKDIR /app COPY requirements.txt . RUN pip3 install -r requirements.txt CMD ["python", "./main.py"] ``` ### 故障排查指南 当遇到问题时,及时有效的诊断手段不可或缺。通过收集日志记录来定位错误源头是最常用的方法;同时也可以借助远程调试工具深入探究程序内部状态变化情况。另外值得注意的是网络连接状况同样可能成为潜在瓶颈所在之处,因此务必保持良好稳定的通信链路质量[^4]。 ```bash # 获取最近的日志条目 tail -f /path/to/log/file.log # 测试网络连通性 ping www.example.com traceroute www.example.com ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值