八皇后
题目链接
思路分析:这是一道需要使用dfs的题,本来考虑用二维数组来记录放皇后的位置,但是题目中的左对角线和右对角线的标记和清除就比较麻烦,看了一下题解,觉得设置4个数组分别表示行,列,左对角线和右对角线。
代码:
#include<stdio.h>
int n;
int a[100],b[100],c[100],d[100];//用来标记行,列,左对角线,右对角线
int all;//记录解的个数
void dfs(int i)//传入当前行数
{
if(i>n)
{
if(all<3)
{
int k;
for(k=1;k<=n;k++)
printf("%d ",a[k]);
printf("\n");
}
all++;
return ;
}
else//尝试每一个可能的列数
{
int j;
for(j=1;j<=n;j++)
{
if(b[j]==0&&c[j-i+n]==0&&d[i+j]==0)//如果该位置合适
{
a[i]=j;
b[j]=1;
c[j-i+n]=1;
d[i+j]=1;
dfs(i+1);
b[j]=0;
c[j-i+n]=0;
d[i+j]=0;
}
}
}
}
int main()
{
scanf("%d",&n);
dfs(1);
printf("%d\n",all);
return 0;
}
奇怪的电梯
题目链接
注意:记得判断如果当前的步数已经>记录的最小步数,就可以回溯,否则有的测试点就会超时。有一个测试的WA了,不鸡丢咋回事呀,望大神指点…
#include<stdio.h>
int N,A,B;
int K[205];
int min=oxffffffff;//记录最小的按键次数
int book[205];
void dfs(int a,int step)//传入当前的层数 ,和按键次数
{
if(a==B)//到达B时
{
if(step<min)
min=step;
step=0;
return;
}
else if(a<B)//未到达时
{
if(step>min) return;
book[a]=1;
if(a-K[a]>=1&&a-K[a]<=N&&book[a-K[a]]==0)
{
book[a-K[a]]=1;
dfs(a-K[a],step+1);
book[a-K[a]]=0;
}
if(a+K[a]>=1&&a+K[a]<=N&&book[a+K[a]]==0)
{
book[a+K[a]]=1;
dfs(a+K[a],step+1);
book[a+K[a]]=0;
}
}
}
int main()
{
scanf("%d %d %d",&N,&A,&B);
int i;
for(i=1;i<=N;i++)
scanf("%d",&K[i]);
dfs(A,0);
if(min!=oxffffffff)
printf("%d",min);
else printf("-1");
return 0;
}
考前临时抱佛脚
题目链接
分析:这道题中说左右脑可以同时写题,太强了吧,但是有限制,左右脑想的题目必须是同一科,这也就暗示我们用贪心,求出每门科所用最短时间相加即可,每门科的最短时间我们可以用dfs,找出所用方案,最终的最短时间也就是左右脑中较长时间中的最短时间。
代码:
#include<stdio.h>
int s[5];
int a[5][21];
int all;
int right,left;//左右脑
int min=9999999;
void dfs(int x,int y)//x表示习题,y表示科目
{
if(x>s[y])//当习题全部写完
{
int t;
if(right>left) t=right;
else t=left;
if(t<min)
min=t;
return ;
}
else//将当前的习题加到左脑或者有脑,较小的那个
{
right+=a[y][x];
dfs(x+1,y);
right-=a[y][x];
left+=a[y][x];
dfs(x+1,y);
left-=a[y][x];
}
}
int main()
{
scanf("%d %d %d %d",&s[1],&s[2],&s[3],&s[4]);
int i,j;
for(i=1;i<=4;i++)
{
for(j=1;j<=s[i];j++)
{
scanf("%d",&a[i][j]);
}
dfs(1,i);
all+=min;
right=left=0;
min=9999999;
}
printf("%d",all);
return 0;
}
马的遍历
题目链接
分析:我看题目算法标签就是bfs,然后我就用bfs加队列写的。刚开始傻呼呼的我把队列开成1601也是没谁了,其实应该是160000+才对,哈哈哈哈。
代码:
#include<stdio.h>
#include<math.h>
//队列的节点结构
struct node
{
int x;
int y;
}queue[160010]; //行列小于等于400,队列扩展不会超过160000个
int book[401][401];//标记哪些点已经到达
int ans[401][401];//记录每个点所能到达的最短步数
int i,j,m,n,tx,ty,sx,sy;//sx,sy开始的横纵坐标,tx,ty下一步横纵坐标
void bfs(int sx,int sy,int sstep)
{
int head,tail;//队列头,尾
//一共八个方向,即去掉x,y绝对值相等的坐标,根据画图可得
int next_x[4]={1,-1,2,-2};
int next_y[4]={1,-1,2,-2};
ans[sx][sy]=sstep;
book[sx][sy]=1;
head=1;
tail=1;
queue[1].x=sx;
queue[1].y=sy;
tail++;
int flag;//判断当前点能否继续扩展
while(tail>head)//当队列不为空,也就是当最后队列无法继续扩展时结束循环
{
//枚举8个方向
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
if(abs(next_x[i])!=abs(next_y[j]))//横纵坐标绝对值不相等时
{
tx=queue[head].x+next_x[i];
ty=queue[head].y+next_y[j];
//判断是否出界以及是否走过
if(tx<1||tx>m||ty<1||ty>n)
continue;
if(book[tx][ty]==0)
{
book[tx][ty]=1;//标记走过
queue[tail].x=tx;
queue[tail].y=ty;
tail++;
ans[tx][ty]=ans[queue[head].x][queue[head].y]+1;//步数加一
}
}
}
}
head++;
}
}
int main()
{
scanf("%d %d %d %d",&m,&n,&sx,&sy);//m行,n列
bfs(sx,sy,0);
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
{
if(i==sx&&j==sy)
{
printf("%-5d",0);
}
else if(ans[i][j]==0)
printf("%-5d",-1);
else printf("%-5d",ans[i][j]);
}
printf("\n");
}
return 0;
}