目录
-
1 什么是积分饱和
-
2 实际的例子
-
3 负面影响
-
4 如何防止积分饱和
-
5 PID算法(抗饱和)
1 什么是积分饱和
积分饱和(Integral windup
或integrator windup
)是指PID控制器或是其他有积分器的控制器中可能会发生的一种现象。
这种现象往往发生在误差有大幅变化(例如大幅增加),积分器因为误差的大幅增加有很大的累计量,因为积分器的输出满足下式;
离散化形式表示为:
所以随着时间的增加,每次累积较大的误差,很容易造成积分饱和并产生较大的过冲,而且当误差变为负时,其过冲仍维持一段时间之后才恢复正常的情形。
2 实际的例子
这里举一个直流电机调速例子,先看下图;
-
设定转速为,这里可以是
100 rpm
,但是由于某种原因电机一开始堵转了,所以反馈的转速为0
; -
这时候仍然处于堵转状态,那偏差 就会一直处于很大的状态,积分器对偏差 进行累积,便迅速达到一个很大的值,导致
PID
的输出已经接近输出的上限,导致最终输出的PWM
的占空比很大; -
此时,堵转忽然消失,但是前面提到
PID
的输出已经接近输出的上限,因此电机转速也急剧上升,当时, ,此时偏差都处于负数状态; -
虽然误差变成负数,并且积分器开始累加负数,但是由于之前积分器累积的值已经很大,于是,PID依然会保持较大的输出一段时间,从而产生了很大的过冲;
通常会产生的输出如下图所示;
从图中我们不难发现,这里有三个过程;
-
过程①:因为这个过程存在较大幅度变化的误差,因此积分器累积了较大的值,从图中可以看到,积分器的面积比较大(阴影部分);
-
过程②:此时积分已经饱和,产生了较大的过冲,并且在较长的一段时间内,一直处于过冲的状态;
-
过程③:积分脱离饱和状态,产生了积极的调节作用,消除静差,系统输出达到设定值;
3 负面影响
积分器的作用是消除系统稳态误差,如果出现积分饱和,往往会对系统造成负面的影响;
-
系统输出会产生较大的过冲(超调量);
-
如果产生正向饱和(图一所示)则系统对于反向的变化会偏慢;
系统产生了较大的过冲 ,并且较大的一段时间都处于过冲的状态;具体如下图所示;
4 如何防止积分饱和
为了防止PID控制器出现积分饱和,需要在算法加入抗积分饱和(anti-integral windup
)的算法;通常有以下几种措施;
-
积分分离或者称为去积分算法;
-
在饱和的时候将积分器的累计值初始化到一个比较理想的值;
-
若积分饱和因为目标值突然变化而产生,将目标值以适当斜率的斜坡变化可避免此情形;
-
将积分累计量限制上下限,避免积分累计量超过限制值;
-
如果PID输出已经饱和,重新计算积分累计量,使输出恰好为合理的范围;
TI文档中的方法
下面是TI
的位置式PI算法所做的改进,如下图所示;
比例部分的输出:
积分部分的输出:
未做处理的PID输出:
最终PID输出 :
抗积分饱和用的系数
根据我的理解,由上述输出和①式可知,判断系统是否处于饱和的状态;
如果,说明积分器处于饱和状态,此时使系数为0,这样防止积分进一步进行累积。
反计算抗饱和法
反计算Anti-Windup
法,简称AW法,就是在输出限幅部分根据输入信号和输出信号的差值,把作为反馈值输入到积分部分,从而达到抑制积分饱和现象的目的;
具体如下图所示;
不难发现,在输出未饱和的情况下, 因此不会对积分器造成影响;当系统发生饱和时,则 ;
现在假设此时为正向饱和,则 ,那么,所以最终将反馈到积分部分;那么从图中可知,相当于从中减去了,这样可以削弱积分,让它退出饱和的状态;
关于系数, 越大,积分器退出饱和的作用越强,反之则越弱;
当然,积分抗饱和的方法还有很多 遇限积分削弱法,遇限保留积分法 ,这只是其中的一种,下面给出TI
的位置式PID
算法,增量式的抗饱和处理也是类似的做法。
5 PID算法(抗饱和)
TI
的算法中只实现了比例和积分,如果需要微分项,可以去除结尾部分的注释;
/* ==================================================================================
File name: PID_REG3.H (IQ version)
=====================================================================================*/
#ifndef __PIDREG3_H__
#define __PIDREG3_H__
typedef struct { _iq Ref; // Input: Reference input
_iq Fdb; // Input: Feedback input
_iq Err; // Variable: Error
_iq Kp; // Parameter: Proportional gain
_iq Up; // Variable: Proportional output
_iq Ui; // Variable: Integral output
_iq Ud; // Variable: Derivative output
_iq OutPreSat; // Variable: Pre-saturated output
_iq OutMax; // Parameter: Maximum output
_iq OutMin; // Parameter: Minimum output
_iq Out; // Output: PID output
_iq SatErr; // Variable: Saturated difference
_iq Ki; // Parameter: Integral gain
_iq Kc; // Parameter: Integral correction gain
_iq Kd; // Parameter: Derivative gain
_iq Up1; // History: Previous proportional output
} PIDREG3;
typedef PIDREG3 *PIDREG3_handle;
/*-----------------------------------------------------------------------------
Default initalizer for the PIDREG3 object.
-----------------------------------------------------------------------------*/
#define PIDREG3_DEFAULTS { 0, \
0, \
0, \
_IQ(1.3), \
0, \
0, \
0, \
0, \
_IQ(1), \
_IQ(-1), \
0, \
0, \
_IQ(0.02), \
_IQ(0.5), \
_IQ(1.05), \
0, \
}
/*------------------------------------------------------------------------------
PID Macro Definition
------------------------------------------------------------------------------*/
#define PID_MACRO(v) \
v.Err = v.Ref - v.Fdb; /* Compute the error */ \
v.Up= _IQmpy(v.Kp,v.Err); /* Compute the proportional output */ \
v.Ui= v.Ui + _IQmpy(v.Ki,v.Up) + _IQmpy(v.Kc,v.SatErr); /* Compute the integral output */ \
v.OutPreSat= v.Up + v.Ui; /* Compute the pre-saturated output */ \
v.Out = _IQsat(v.OutPreSat, v.OutMax, v.OutMin); /* Saturate the output */ \
v.SatErr = v.Out - v.OutPreSat; /* Compute the saturate difference */ \
v.Up1 = v.Up; /* Update the previous proportional output */
#endif // __PIDREG3_H__
// Add the lines below if derivative output is needed following the integral update
// v.Ud = _IQmpy(v.Kd,(v.Up - v.Up1));
// v.OutPreSat = v.Up + v.Ui + v.Ud;