深度学习中的深度生成网络与医学图像分类
在深度学习领域,深度生成网络以及医学图像分类是两个重要的研究方向。深度生成网络能生成新的数据样本,而医学图像分类则在医疗诊断等方面有着重要应用。下面将详细介绍相关内容。
深度生成网络的基本模型
深度生成网络有多种基本模型,它们在不同方面对原始的变分自编码器(VAEs)或生成对抗网络(GANs)进行了改进,以实现更好的知识交互和新功能。以下是几种典型的模型:
1. 条件生成对抗网络(cGAN)
- 原理 :在原始GAN论文之后提出,用于实现对生成过程的控制。给定噪声z和条件输入y(如分类标签),生成器可以同时看到数据样本(生成的或真实的)和相应的条件输入y,鉴别器则学习找出生成器输出与条件输入之间的不一致,从而迫使生成器输出与条件输入对应的样本。
- 目标函数 :
[
\min_{G} \max_{D} V (D,G) = E_{x\sim p(x)}[\log D(x|y)] + E_{z\sim p(z)}[\log(1 - D(G(z|y)))]
]
- 局限性 :控制是隐式诱导的,不总是能保证有效。极端情况下,鉴别器可能会忽略条件输入,而目标仍能被优化。
2. 信息生成对抗网络(InfoGAN)
- 原理 :传统GAN通常有两个局限性,即没有推理机制和生成过程无法控制。InfoGAN通过最大化控制潜在代码c(即要解纠缠的潜在变量)与生成器输出
订阅专栏 解锁全文
6536

被折叠的 条评论
为什么被折叠?



