天梯赛训练题9

本文探讨了一种基于分而治之策略的城市攻占算法,通过判断特定打击方案是否能使敌方城市孤立无援,进而实现逐个击破的目标。文章详细解析了算法的实现过程,并附带了完整的代码示例。
  • 题目描述

L2-1 分而治之 (25 分)

分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。

输入格式:

输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:

Np v[1] v[2] ... v[Np]

其中 Np 是该方案中计划攻下的城市数量,后面的系列 v[i] 是计划攻下的城市编号。

输出格式:

对每一套方案,如果可行就输出YES,否则输出NO

输入样例:

10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2

输出样例:

NO
YES
YES
NO
NO

 

 

  • ac代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i,a,b) for(int i=(a);i<(b);++i)
#define maxn 10008
pair<int,int>pr[maxn];
int g[maxn];

int main(){
    int n,m,k;
    scanf("%d%d",&n,&m);
    rep(i,0,m)
        scanf("%d%d",&pr[i].first,&pr[i].second);
    scanf("%d",&k);
    rep(i,0,k){
        memset(g,0,sizeof(g));
        int rp;
        scanf("%d",&rp);
        rep(j,0,rp){
            int x;
            scanf("%d",&x);
            g[x]=1;
        }
        int flag=1;
        rep(j,0,m){
            if(g[pr[j].first]==0&&g[pr[j].second]==0){
                flag=0;
                break;
            }
        }
        printf("%s\n",flag?"YES":"NO");
    }
    return 0;
}
  • 思路:

这道题可以理解成去掉图中的一些点,看图中是否存在边,如果不存在边了,就"逐个击破"成功,输出YES,否则输出NO;

可以在已有的边中去逐个判断删点后构成每条边的两个点是否存在,只要有一点不存在,这个边就不存在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值