注意:今天(2018-7-14)安装Tensorflow GPU版本时出现错误,最后删了Anaconda重新安装,发现3.6环境可以直接安Tensorflow,根本无需设置虚环境,也无需关联!所以以下没什么用了哈哈哈!
一站式环境配置服务,省时省心。
一、大体流程
准备:安装Anaconda, Pycharm
创建conda虚环境,安装Tensorflow,安装Keras
Pycharm下链接到虚环境,运行Tensorflow
Jupyter Notebook 链接到虚环境,运行Tensorflow
二、详细说明
创建虚环境
因为当时Tensorflow只能在Py3.5中运行,而正常是3.6版本,我们只能创建一个3.5的新环境供其生长,Anaconda Prompt中,conda命令如下:
# 可选: 将conda切换到清华镜像 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes # 创建名为tensorflow 的python 3.5 环境 conda create -n tensorflow python=3.5
之后我们要进入这个环境安装tensorflow, 这个环境中
# 进入tensorflow环境: activate tensorflow # 安装tensorflow pip install tensorflow # 如果上步不好使可以试下 pip install --ignore-installed --upgrade tensorflow
安装完毕后,可以在命令行中输入以下测试:
python import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello))
如果想退出该虚环境:
deactivate tensorflow
安装Keras及其他包(因为是新环境,好多包都没有)
# conda 安装包的命令大体如下,此法不必切换到虚环境下 conda install --name env_name package_name # 具体如 conda install --name tensorflow pandas #查看已安装环境名,可用 conda info –envs #对于在名为tensorflow的环境下安装Keras conda install --name tensorflow -c conda-forge keras
链接Pycharm
其实原理就是,换个编译器,用3.5的编译器罢了!
Settings -> Project -> Project Interpreter,选所创建环境所在目录下的那个Python,默认在 $ANACONDA_HOME/envs/env_name/python.exe
切换完新编译器等待一段indexing后,输入 import tensorflow as tf 不报错,多半是稳了,进一步测试,可用:
import tensorflow as tf x = tf.constant([[1.0, 2.0]]) #常数张量 w = tf.constant([[3.0], [4.0]]) y = tf.matmul(x, w) #计算图节点 with tf.Session() as sess: #创建会话 print (sess.run(y)) #运行计算
若输出结果为11则说明OK
链接Jupyter Notebook 参考:冷江
没有Jupyter是不完整的,Anaconda Prompt中操作详情如下:
# 激活环境(以名为tensorflow的为例) activate tensorflow # 安装 conda install ipykernel # 将环境写入notebook kernel python -m ipykernel install --user --name 环境名称 --display-name "Python (环境名称)" # 然后打开Notebook jupyter notebook
至此,完成。
参考致谢:
及一些忘记来源的作者!