- 博客(109)
- 收藏
- 关注
原创 【IQA技术专题】人脸多任务IQA Benchmark:F-Bench
本文提出首个针对AI生成、定制及修复人脸的质量评估数据库FaceQ,包含12,255张图像和491,130条多维度人工评分。基于FaceQ构建了F-Bench基准,系统评估了29个主流模型在质量、真实性等维度的表现,发现Flux-dev、PhotoMaker等模型在不同任务中表现优异。同时设计了一站式评估模型F-Eval,通过双视觉编码器和多专家LoRA调优,在各项任务上超越现有方法。该研究为AIGC人脸任务提供了全面的质量评估解决方案。
2025-12-21 19:27:36
551
原创 【IQA技术专题】CLIPIQA代码讲解
本文解读了CLIPIQA技术及其代码实现。CLIPIQA改进了原始CLIP的视觉感知评估方法,通过引入正反提示词对计算softmax得分($\overline{s}=\frac{e^{s_{1}}}{e^{s_{1}}+e^{s_{2}}}$),并选用ResNet骨干网络移除位置嵌入以避免图像失真。提供了两个版本:基础版CLIP-IQA直接使用预训练权重,CLIP-IQA⁺则通过微调提示词提升性能。代码结构基于IQA-pytorch项目实现,核心模块clipiqa_arch.py中,CLIPIQA类支持不同
2025-12-21 19:26:04
709
原创 【IQA技术专题】使用CLIP进行IQA:CLIPIQA
本文提出CLIP-IQA模型,首次探索CLIP在图像质量评估中的潜力。通过反义词提示词配对策略和移除位置嵌入,无需训练即可实现质量感知和抽象感知评估。实验表明,CLIP-IQA在多个IQA数据集上优于无监督方法且接近有监督方法,同时能评估亮度、噪点等细粒度属性及情绪、美学等抽象概念。微调版CLIP-IQA⁺性能进一步提升,但存在提示词敏感等局限。该工作为通用图像评估提供了新思路。
2025-12-20 21:06:30
867
原创 【HDR专题】UltraFusion : 超高动态的多曝光融合
介绍了一种名为UltraFusion的创新HDR图像融合方法,专门针对大曝光差异(高达9档)和动态场景的挑战。传统方法面临光流对齐困难、物体成像差异和色调映射失真三大难题。UltraFusion通过两阶段框架实现突破:预对齐阶段采用亮度匹配和双向光流处理遮挡问题;引导修复阶段基于Stable Diffusion模型,创新性地设计了分解与融合控制分支(DFCB)和保真度控制分支(FCB)。
2025-12-20 20:39:22
1024
原创 【IQA技术专题】MANIQA代码讲解
本文介绍了MANIQA技术的实现流程和代码结构。MANIQA采用ViT网络提取图像特征,通过分块处理将224×224输入图像划分为784个8×8的patch,经线性投影后加入位置嵌入。ViT提取7-10层特征进行拼接,通过转置注意力块(TAB)实现通道交互,再经Swin Transformer块(SSTB)进行空间局部交互。最终通过双分支结构预测斑块权重和质量分数,加权融合得到图像质量评分。代码层面基于IQA-pytorch项目实现,核心模块包括特征提取、TAB/SSTB处理和双分支预测等部分,完整复现了论
2025-12-16 22:21:16
801
原创 【超分辨率专题】SeedVR2 :基于对抗训练的单步扩散视频复原(SeedVR加速版)
摘要: SeedVR2提出了一种基于对抗训练的单步扩散视频复原方法,显著提升了扩散模型的推理效率。该方法通过自适应窗口注意力机制动态调整窗口尺寸,解决了高分辨率视频的边界伪影问题,并采用**零依赖教师模型的对抗后训练(APT)**直接优化预训练扩散模型,避免了性能上限限制。此外,结合渐进式蒸馏与改进的损失函数设计,SeedVR2在单步采样下实现了高质量视频恢复,为实时应用提供了高效解决方案。实验表明,该方法在速度和性能上均优于传统多步扩散模型。
2025-12-16 22:11:56
1555
原创 【LUT技术专题】LLFLUT代码讲解
本文介绍了一种基于拉普拉斯金字塔分解的LLFLUT图像增强技术。该方法通过两阶段处理:首先进行粗增强,生成全局增强结果和下采样增强结果;然后利用拉普拉斯金字塔分解图像,逐层增强高频细节,底层还结合canny边缘信息辅助处理。代码实现主要包括LLF_LUT.py核心模块,包含Transformer模型、拉普拉斯滤波器、可学习3D LUT等组件,通过金字塔分解-增强-重建流程实现图像质量提升。网络在训练时还考虑了平滑损失和单调性约束,确保增强结果的视觉效果自然。
2025-12-07 21:24:36
650
原创 【IQA技术专题】多维度注意力IQA:MANIQA
本文提出MANIQA模型,通过多维度注意力机制提升无参考图像质量评估性能。该模型采用ViT作为特征提取器,结合转置注意力块(TAB)增强通道间全局交互,利用尺度Swin Transformer块(SSTB)强化局部斑块关系,并通过双分支预测结构输出质量分数。实验表明,MANIQA在多个标准数据集上显著优于现有方法,在NTIRE 2022挑战赛中排名第一,尤其擅长评估GAN生成失真图像。该研究为复杂失真场景下的图像质量评估提供了有效解决方案。
2025-12-07 21:24:18
859
原创 【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
FlashVSR提出了一种实时视频超分新方法,通过三阶段训练框架实现高效处理。首先利用全注意力模型训练强教师模型,再适配为因果稀疏注意力结构,最后蒸馏为单步模型。创新性地引入局部约束稀疏注意力机制,降低计算复杂度并解决高分辨率泛化问题。同时设计轻量级条件解码器,结合流式处理架构,仅需8帧前瞻延迟,显著提升效率。实验表明,该方法在保持高质量输出的同时,速度提升约7倍,为实时视频超分提供了可行方案。
2025-12-06 21:44:39
903
原创 【LUT技术专题】LLFLUT++: 基于拉普拉斯金字塔的LUT方法
LLFLUT++提出了一种基于拉普拉斯金字塔的实时高分辨率图像增强方法。该方法通过金字塔分解将图像处理分为全局色调调整和局部细节增强两个阶段:在低频分量使用图像自适应3D LUT进行高效全局调整,在高频分量采用可学习局部拉普拉斯滤波器细化边缘细节。创新性地结合了空间-频率Transformer权重预测器和两种融合策略,在保持13ms实时处理速度(4K分辨率)的同时,在MIT-Adobe FiveK和HDR+数据集上PSNR指标提升2.64dB,显著优于现有方法。该方法首次实现了全局与局部增强的平衡,为高分辨
2025-12-06 21:43:54
805
原创 【即插即用网络结构专题】CBAM:一种空间和通道混合注意力机制卷积模块
本文提出CBAM(卷积块注意力模块),通过通道和空间注意力子模块顺序优化CNN特征图。通道注意力采用双池化(平均+最大)与共享MLP,空间注意力使用通道轴双池化与7×7卷积。实验表明,CBAM能显著提升模型性能(如ResNet50在ImageNet上Top-1错误率降低1.3%),仅增加少量计算开销。该模块轻量通用,可无缝集成到各类CNN架构中。
2025-12-01 22:44:49
956
原创 【即插即用网络结构专题】SCConv:一种基于空间合通道重构的高效卷积模块
本文提出SCConv模块,通过空间重构单元(SRU)和通道重构单元(CRU)减少CNN特征冗余。SRU利用组归一化权重分离有效/冗余空间特征,并通过交叉重构强化有效特征;CRU采用分割-转换-融合策略,分层提取高维和浅层特征后自适应融合。实验表明,SCConv能显著降低计算成本(减少30%FLOPs)的同时提升模型性能,在ImageNet分类任务上ResNet50精度提升1.2%。该模块可即插即用替换标准卷积,适用于各类CNN架构。
2025-12-01 22:36:26
1085
原创 【超分辨率专题】SeedVR :实现任意长度 / 分辨率的视频高效修复
SeedVR:提出了一种创新框架,通过Swin-MMDiT模块和因果视频自编码器实现任意长度/分辨率视频的高效修复。实验表明,该方法在性能与速度上均优于现有方案,为真实世界视频修复提供了实用解决方案。
2025-11-25 21:56:25
966
原创 【IQA技术专题】 主客观结合的不完美IQA:A-FINE
本文提出了一种广义全参考图像质量评估方法A-FINE,突破了传统FR-IQA依赖"参考图像质量完美"的假设。研究团队构建了包含18万张图像的DiffIQA数据集和超分辨率基准SRIQA-Bench,覆盖了参考图像质量优于、相似或差于测试图像的各种情况。A-FINE模型创新性地通过自适应结合图像保真度和自然度评估项,在标准数据集和自建数据集上均优于现有方法。实验表明,该模型不仅能有效评估参考图像不完美时的质量,还能兼容传统FR-IQA场景。这项工作为图像质量评估提供了更灵活、更通用的解决方
2025-11-25 21:41:29
970
原创 【LLIE技术专题】Dark-Isp 一种Raw图像的微光检测方案
该论文针对低光环境下目标检测因图像质量退化(噪声放大、对比度降低)面临的挑战,提出轻量级自适应性 ISP 插件 Dark-ISP。该方案以 Bayer RAW 图像为处理对象,核心创新在于:将传统 ISP 流程拆解为 “动态线性组件”(结合局部 - 全局注意力,实现物理先验与内容感知的线性转换)与 “物理可解释非线性组件”(基于非凸多项式基,实现暗区拉伸与亮区压缩),并通过 Self-Boost 正则化模块构建两组件的反馈闭环,确保协同优化。
2025-11-16 17:32:37
1300
原创 【IQA技术专题】 Q-Instruct:提升MLLM的IQA能力
Q-Instruct:提升MLLM的低阶视觉能力(2024 CVPR) 本文提出Q-Instruct方法,通过构建包含58K人类反馈的Q-Pathway数据集和GPT生成的200K指令-响应对,显著提升了多模态基础模型(MLLMs)在低阶视觉任务上的表现。研究采用两种训练策略(混合训练和分阶段训练),在4个基线模型上验证了有效性:低阶视觉感知任务准确率平均提升5%-10%,描述任务相关性提升0.31,质量评估任务在未见数据集上SRCC提升0.243。该方法为MLLMs适配低阶视觉任务(如模糊检测、噪声识别、
2025-11-16 17:31:35
941
原创 【IQA技术专题】 基于多模态大模型的IQA Benchmark:Q-BENCH
Q-BENCH(2024 ICLR)首次系统评估多模态大模型(MLLMs)的低层次视觉能力,提出包含3大任务的基准框架:1)构建LLVisionQA数据集(2,990图)测试感知能力,采用问答形式评估10类图像属性的识别准确率;2)建立LLDescribe数据集(499图)评估描述能力,通过专家标注与GPT评分从完整性/精确性/相关性三维度量化;3)设计softmax质量预测策略将MLLM输出映射为可量化分数。实验表明GPT-4V在感知任务接近初级人类水平(73.36%准确率),InternLM-XComp
2025-11-12 21:54:42
678
原创 【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
该论文提出HYPIR框架,将扩散模型先验与GAN对抗训练结合。方法核心在于:1)利用预训练扩散模型初始化网络参数,继承其强大的自然图像先验;2)通过退化预去除编码器微调初步消除图像退化;3)采用对抗训练适配复原任务。理论证明表明,扩散模型初始化使网络初始分布接近自然图像分布,有效稳定了GAN训练过程。实验显示该方法在保持单步推理效率的同时,显著提升了图像复原质量,支持文本引导和纹理调节。
2025-11-12 21:51:48
1436
原创 【LLIE技术专题】基于成对低光图像学习自适应先验方案代码讲解
本文介绍了一种基于成对低光图像学习的无监督增强方法PairLIE。该方法通过利用同场景不同光照条件的成对图像来自适应学习先验知识,减少了对人工先验的依赖。核心代码包含三个网络模块:N_net完成降噪恒等映射,R_net和L_net分别预测反射图和光照图。训练时从多曝光数据集中随机选取两个不同曝光图像进行处理,并计算R正则损失和Retinex损失。推理阶段通过对光照图进行gamma增强后与反射图结合得到最终增强结果。该方法结构简洁,通过成对图像优化实现更自然的低光增强效果。
2025-11-10 21:43:45
598
原创 【LLIE技术专题】基于成对低光图像学习自适应先验方案
本文提出一种无监督低光图像增强方法PairLIE,通过利用成对低光图像学习自适应先验,减少对人工设计先验的依赖。基于Retinex理论,PairLIE采用轻量级网络结构(P-Net、L-Net、R-Net)实现图像分解,结合投影损失、反射率一致性损失和Retinex损失优化训练。实验表明,该方法在多项指标上超越主流无监督方法,性能接近有监督方法,并具有出色的噪声抑制和细节保持能力。PairLIE为低光增强提供了一种简单高效的无监督解决方案。
2025-11-10 21:42:16
1313
原创 【LUT技术专题】SVDLUT代码讲解
本文介绍了SVDLUT技术的核心代码实现。该技术通过SVD分解将3DLUT转换为多个2DLUT的加权求和,显著降低了参数和计算量。代码结构主要包括:1)Backbone网络提取图像特征;2)Gen_2D_SVD_LUT和Gen_2D_LUT_weight_bias类生成3DLUT及其权重参数;3)双边网格生成模块。整体流程为:提取特征后生成2DLUT和网格,通过加权插值得到最终结果。该方法与SABLUT类似,但通过降维优化提高了效率。核心创新在于引入Grid weights和LUT weights对多个2D
2025-11-01 14:54:02
817
原创 【LUT技术专题】SVDLUT: 基于SVD优化的3DLUT
SVDLUT: 基于SVD优化的3DLUT图像增强方法 摘要:本文提出SVDLUT方法,通过奇异值分解(SVD)将3D查找表(LUT)分解为低维2D LUT的线性组合,显著减少88%的参数。针对高分辨率图像处理的内存瓶颈,设计了缓存高效的空间特征融合结构。实验表明,该方法在FiveK数据集480p分辨率下PSNR达25.76dB,同时模型尺寸仅160.5KB(约为SABLUT的1/3),4K分辨率处理仅需1.38ms,在保持空间感知能力的同时大幅提升效率。 创新点: 将3D LUT降维分解为2D LUT组合
2025-11-01 14:51:39
1011
原创 【LLIE技术专题】可解释的零参考联合去噪与低光增强框架
本文提出一种可解释的无监督联合去噪与低光增强方法(ICLR 2025),针对真实场景中低光图像存在的噪声、过曝和光照不均等复杂退化问题。基于Retinex理论和物理成像过程,该方法通过邻域像素掩蔽生成自监督训练对,并利用离散余弦变换(DCT)进行频域分解以分离复杂退化模式。核心框架包含FIcoder退化表征提取、Decompose-Net分量分解和LCnet自适应光照校正模块,实现了端到端联合优化。在LOLv2等数据集上的实验表明,该方法PSNR达20.22、SSIM达0.793,显著优于现有无监督方法,能
2025-10-29 21:41:08
876
2
原创 【LLIE专题】LTMNet:精准且灵活的图像局部增强方法
本文提出了一种基于局部色调曲线网格(LTMNet)的图像增强方法,通过CNN预测空间自适应色调曲线,实现对图像的局部精准增强。该方法结合双线性插值确保平滑过渡,并引入单调性和高光保留约束以保证自然效果。相较于全局变换和端到端像素级方法,LTMNet在增强效果、可解释性和部署效率上取得更好平衡。此外,作者构建了专门的LTM数据集,采用CLAHE结合NIMA自动筛选优化参数,为局部色调映射研究提供了更纯净的数据基准。实验表明,该方法能有效提升暗区亮度并增强亮区对比度,同时避免了光晕伪影和过增强问题。
2025-10-29 21:39:45
1139
原创 【LUT技术专题】双边网格优化的3DLUT-SABLUT
SABLUT提出了一种结合双边网格与3D查找表的高效图像增强方法,通过空间感知机制实现实时处理。该方法采用轻量级CNN提取图像特征,生成可学习的双边网格用于空间信息融合,再配合3D LUT进行颜色增强。相比传统3D LUT方法,SABLUT在保持3D LUT高效性的同时引入空间感知能力,参数规模仅463.7K,4K分辨率处理仅需3.64ms,性能达到SOTA水平。该方法为实时图像增强提供了新的解决方案。
2025-10-27 22:42:50
947
原创 【LLIE技术专题】LiteIE :超轻量级无监督低光图像增强框架
本文提出LiteIE框架,一种面向移动设备的超轻量级无监督低光图像增强方案。针对现有方法参数量大、计算成本高的问题,LiteIE采用双核心设计:1)轻量级特征提取器(仅58参数)通过权重共享双卷积实现多尺度特征捕捉;2)无参数迭代恢复模块(IRM)复用特征进行残差调整,在提升图像亮度的同时保护细节。实验表明,该方案在保持视觉质量的前提下显著降低计算开销,适用于资源受限设备。关键创新在于非线性对比度增强项$(I^{(t)})^2-I^{(t)}$的设计,通过平方运算强化亮区、抑制暗区,配合Tanh约束实现平滑
2025-10-18 22:07:40
1223
原创 【LUT技术专题】空间感知3D查找表-SA-3DLUT
空间感知3D查找表(SA-3DLUT):实时图像增强新方法。本文解析了CVPR 2021提出的SA-3DLUT模型,通过创新性设计实现高效高质量的图像增强。核心贡献包括: 空间感知3D LUTs:引入M个基础LUT与像素级权重图(H×W×M)进行动态融合,增强局部对比度与色彩表现(如图1背景饱和度提升案例); 双头权重预测器:轻量UNet结构同时输出1D场景权重(T=3)和3D空间权重,兼顾全局适配与局部优化; 定制化三线性插值:CUDA加速实现空间感知插值,处理4K图像仅需4ms(V100 GPU)。
2025-10-18 20:52:51
974
2
原创 【超分辨率专题】DOVE:特色双阶段训练的单步Real-World视频超分辨
DOVE:高效单步扩散模型实现真实世界视频超分辨率, 针对真实世界视频超分辨率任务,传统方法存在泛化性差、伪影多或计算效率低等问题。DOVE首次将单步采样机制引入视频超分领域,通过双阶段训练策略在保证质量的同时大幅提升推理速度。
2025-10-15 21:17:12
1273
2
原创 【LLIE技术专题】基于光照感知伽马校正与完整图像建模网络的低光图像增强(IAGC)方案
本文提出了一种低光图像增强方法IAGC,通过融合光照感知伽马校正与完整图像建模网络,有效解决现有方法难以处理大面积暗区域的问题。IAGC采用三阶段增强流程:首先通过全局伽马校正进行粗增强,再利用COMO-ViT建模全像素依赖实现细节增强与降噪,最后通过局部伽马校正微调光照分布。核心创新包括:1)光照感知伽马校正模块(GGCM/LGCM)实现从全局到局部的自适应亮度调整;2)COMO-ViT结合局部-全局注意力机制,完整建模像素依赖关系。实验表明该方法在保持自然视觉效果的同时,显著提升了暗区细节恢复能力。
2025-10-15 20:16:31
698
原创 【LUT技术专题】AutoLUT代码讲解
本文介绍了AutoLUT技术的核心代码实现,重点解析了AutoSample和AdaRL两个关键模块。AutoLUT框架通过AutoSample模块实现自动采样(包含卷积和PixelShuffle操作),并结合AdaRL残差模块进行特征融合。文章以MuLUT网络为例,详细展示了AutoLUT模块的代码结构,包括AutoSample类的softmax权重处理、Residual类的加权融合实现,以及改进后的MuLUTUnit类如何集成残差连接。这些模块共同构成了AutoLUT技术的核心,可灵活集成到现有LUT-b
2025-10-13 22:10:48
689
原创 【LUT技术专题】自动采样和自适应残差学习-AutoLUT
AutoLUT:基于自动采样与自适应残差学习的LUT超分辨率方法 本文提出AutoLUT框架,通过AutoSample和AdaRL两个模块优化传统LUT超分辨率方法的缺陷。AutoSample采用可学习的权重采样策略,动态适应像素变化并扩展感受野;AdaRL引入改进的残差连接,增强层间信息流动。实验表明,该方法在MuLUT和SPF-LUT上均显著提升性能:MuLUT平均PSNR提高0.2dB,SPF-LUT在存储减少50%、推理时间降低2/3的情况下保持相近效果。
2025-10-13 22:09:44
1438
原创 【LLIE技术专题】 SCI代码讲解
本文解读了SCI自校准光照学习框架的代码实现,该框架解决了低光图像增强领域现有方法的局限性。SCI采用"训练多模块、推理单块"的两阶段设计:训练阶段通过级联光照学习模块和自校准模块提升基础块表征能力,推理阶段仅使用单个基础块(3个3×3卷积+ReLU)实现高效增强。代码结构包含数据加载、损失函数、模型等核心模块,其中数据加载支持全尺寸输入,损失函数结合了保真度和平滑性约束。该框架在保持计算效率的同时,显著提升了低光增强的视觉质量和场景适应性。
2025-09-26 20:57:42
884
原创 【LLIE技术专题】 自校准光照学习框架:SCI
本文提出自校准光照学习框架SCI,用于高效低光图像增强。SCI采用权重共享级联光照学习和自校准模块,在训练阶段通过多阶段优化提升性能,而推理时仅需单个轻量级基础块(3个3×3卷积),显著降低计算成本(模型大小0.0003M、FLOPs 0.0619G)。该方法具有操作不敏感性和模型无关性,在MIT数据集上取得PSNR 20.4459、SSIM 0.8934的SOTA效果,并在低光人脸检测(DARK FACE mAP 0.663)和夜间语义分割(ACDC mIoU 46.3)任务中展现优异泛化能力。SCI通过
2025-09-26 20:53:56
1273
原创 【LLIE专题】GT-Mean Loss:一种低照度图像增强的损失函数
本文提出了一种GT-Mean Loss方法,用于解决低光图像增强(LLIE)中的亮度失配问题。该方法通过动态平衡原始损失项和亮度对齐损失项,有效消除了增强图像与真值图像之间的亮度差异。核心公式采用亮度均值高斯分布建模和巴氏距离计算权重W,实现端到端训练。实验表明,该方法在保持模型性能的同时显著提升了视觉质量,计算高效且兼容现有损失函数。相关代码已开源,为解决LLIE中的亮度失配问题提供了简单有效的解决方案。
2025-09-25 21:44:27
1550
1
原创 【超分辨率专题】DLoRAL:视频超分辨率的新范式,细节与时序一致的双重提升
本文提出了一种基于扩散模型的视频超分辨率新方法DLoRAL,通过双LoRA学习范式将时序一致性和空间细节解耦优化。该方法设计了跨帧检索模块(CFR)提取退化鲁棒的时序特征,并采用分阶段训练策略交替优化两个目标。实验表明,DLoRAL在保持时间一致性的同时生成更丰富的细节,且推理速度比现有方法快约10倍。该方法为视频超分辨率任务提供了一种高效且高质量的解决方案。
2025-09-25 21:41:00
983
原创 【IQA技术专题】 基于退化图像一致性的保真度IQA:CDI
本文提出了一种基于退化图像一致性的盲图像恢复保真度评估方法CDI,针对传统IQA在评估GAN/DM生成的高感知质量BIR图像时存在的局限性,设计了全参考RGCDI和无参考RACDI两种评估指标。RGCDI通过小波变换分离退化图像的衰减和噪声,匹配恢复图像与退化图像的衰减一致性;RACDI则训练小波衰减提取网络实现无参考评估。实验基于构建的DISDCD数据集验证了CDI在2AFC评分上显著优于传统IQA方法,与主观评价高度一致。该方法为解决BIR评估中解的非唯一性和退化不确定性挑战提供了新思路,为图像质量评价
2025-09-23 22:32:30
1115
原创 【IQA技术专题】MUSIQ代码讲解
本文解读了MUSIQ图像质量评价指标的代码实现,该模型通过多尺度表示、空间嵌入和尺度嵌入解决了CNN在IQA中因固定输入尺寸导致的失真问题。核心模块包括多尺度补丁嵌入、哈希基2D空间嵌入和尺度嵌入(SCE),最终通过Transformer编码器聚合信息输出质量评分。代码实现基于IQA-Pytorch工程,主要包含MUSIQ类完成参数配置与函数调用,通过预处理生成多尺度图像序列,利用ResNet提取特征后经Transformer处理,输出质量评分分布和MOS值。模型支持可变尺寸输入,适用于各类图像质量评估任务
2025-09-23 22:31:33
901
原创 【LLIE专题】LYT-Net:一种轻量级 YUV Transformer 低光图像增强网络
本文介绍了一种轻量级Transformer网络LYT-NET,用于低光照图像增强。该模型采用YUV色彩空间分离处理亮度(Y)和色度(U,V)通道,结合创新的通道降噪模块(CWD)和多阶段挤压融合模块(MSEF),在保持低计算复杂度的同时实现高效增强。
2025-09-07 20:28:14
1295
原创 【IQA技术专题】 多尺度的transformer网络IQA:MUSIQ
本文解析了《MUSIQ:Multi-scale Image Quality Transformer》提出的创新IQA方法。针对传统CNN因固定输入尺寸导致的质量评估失真问题,MUSIQ通过多尺度Transformer架构实现原生分辨率图像质量评估。其核心创新包含: 多尺度补丁嵌入处理可变尺寸输入 哈希基2D空间编码保持位置信息 尺度嵌入区分不同分辨率特征 结合L1和EMD损失的训练策略 实验表明,该方法在多个IQA基准上优于传统CNN方法,尤其擅长处理不同分辨率和宽高比的图像质量评估任务。
2025-09-06 22:51:25
980
图像超分-ECLUT-快速查找-代码实现
2025-05-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅