深度学习 第四讲 反向传播

在这里插入图片描述
对于简单模型可以这么求
但是对于复杂的模型
在这里插入图片描述这样w(权重)太多,不可能挨个写解析式,而且这些函数很多嵌套函数,写起来也十分麻烦
在这里插入图片描述
在这里插入图片描述
由于经过化简,均可以化简成
y = w*x +b的形式
在这里插入图片描述
所以每一层加一个非线性的函数(激活函数)
在这里插入图片描述

我们知道链式求导法则
在这里插入图片描述

反向传播 步骤

step1
先正向传播,算出loss
在这里插入图片描述
step2
通过链式求导法则,可以一步步向前算出最终要求的 loss对指定w的偏导数
在这里插入图片描述

例子
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

代码

import torch

x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]

w = torch.tensor([1.0])
###w的初始值为1.0
w.requires_grad = True
###w需要计算梯度

def f(x):
    return w*x

def loss(x,y):
    y_pred = f(x)
    return (y_pred - y)**2


print("predict (before training)", 4, f(4).item())
for times in range(100):
    for x,y in zip(x_data,y_data):
        #随机梯度下降
        l = loss(x,y)
        #l是一个张量,tensor主要是建立计算图
        #前向传播 l.item
        l.backward()
        #反向传播
        #会自动将这条计算链路上的所有需要梯度的地方,都求出来,存到w中
        #只要一做backward这个 l 计算图就释放了
        print('\tgrad:', x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data
        #由于w中的grad也是一个计算图,所以这里要用到一个标量,故取data,这样就不会简历计算图
        w.grad.data.zero_()
        #将w中 梯度的数据全部清0
        #w更新之后,导数还在
    print('progress:', times, l.item())  # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, f(4).item())
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值