4、心理测量测试的历史演变与问卷构建指南

心理测量测试的历史演变与问卷构建指南

一、心理测量测试的历史演变

(一)人格特质术语的研究

早期,高尔顿基于对英语、德语和其他欧洲语言的了解,确定了约 1000 个描述个体差异的术语。后来,奥尔波特和奥伯特在 1936 年对英语进行了系统调查,列出了约 18000 个人格描述术语,并将其分为四类:个人特质、临时情绪或活动、个人行为判断以及能力和天赋。经过筛选,他们留下了约 4500 个“中性”词汇,并根据其含义进行分类,形成了更少的人格结构。

(二)人格因素分析理论

  1. 卡特尔的 16 种人格因素 :雷蒙德·卡特尔运用因素分析方法,让人们用奥尔波特和奥伯特列表中的 200 个人格描述术语对朋友和自己进行评价。通过分析这些评价,他发现人格描述并非随机的,而是存在明显模式。最终得出了 16 种人格因素(16PF),如下表所示:
    | 特质名称 | 负相关 | 正相关 |
    | — | — | — |
    | 热情 | 冷漠、疏远、冷淡、矜持、孤僻、正式、冷漠 | 热情、外向、关心他人、友善、随和、积极参与、喜欢与人交往 |
    | 推理能力 | 具体思维、不太聪明、一般心智能力较低、无法处理抽象问题 | 抽象思维、更聪明、聪明、一般心智能力较高、学习快 |
    | 情绪稳定性 | 情绪易反应、多变、受情感影响、情绪不太稳定、容易心烦意乱 | 情绪稳定、适应性强、成熟、冷静面对现实 |
    | 支配性 | 顺从、合作、避免冲突、顺从、谦逊、听话、容易被引导、温顺、随和 | 支配性强、有力量、坚定、有攻击性、有竞争力、固执、专横 |
    | 活泼性 | 严肃、

内容概要:本文围绕【卡尔曼滤波】具有梯度流的一类系统的扩散映射卡尔曼滤波器研究(Matlab代码实现)“具有梯度流的一类系统的扩散映射卡尔曼滤波器研究”展开,重点介绍了一种结合扩散映射卡尔曼滤波的新型滤波方法,适用于存在模型不确定性或混沌特征的动态系统状态估计。该方法利用梯度流信息提升滤波性能,在可预测性较高的阶段对混沌系统具备一定的预测能力,并通过Matlab代码实现验证其有效性。文档还附带多个相关研究主题,涵盖故障诊断、路径规划、信号处理、无人机控制、电力系统优化等多个领域,展示了卡尔曼滤波及其他先进算法在工程实践中的广泛应用。; 适合人群:具备一定数学基础和编程能力,从事控制理论、信号处理、自动化、航空航天、机器人或相关工程领域的研究生、科研人员及工程师。; 使用场景及目标:①研究复杂动态系统(如混沌系统)的状态估计预测问题;②提升在模型不准确或噪声干扰严重情况下的滤波精度;③结合Matlab仿真平台开展算法开发验证,推动理论成果向实际应用转化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解扩散映射卡尔曼滤波的融合机制,同时可参考文中列举的多种应用场景拓展思路,注重算法原理工程实现的结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值