32、并行图基半监督学习:原理、算法与优化

并行图基半监督学习:原理、算法与优化

1. 半监督学习概述

半监督学习(SSL)是一种利用少量有标签数据和大量无标签数据来训练决策函数的方法。在许多实际应用中,标注训练数据既耗时又容易出错。例如,语音识别需要大量精心标注的语音数据才能构建准确的系统;在互联网搜索的文档分类中,准确标注大量网页也是不可行的。因此,SSL在机器学习的许多应用中是一种非常有用的技术,因为它只需要标注相对少量的可用数据。

SSL与直推式学习问题相关。一般来说,如果一个学习器是为仅在一个封闭数据集上进行预测而设计的,且测试集在训练时就已知,那么它就是直推式学习器。实际上,直推式学习器可以进行修改以处理未见过的数据。

在SSL中,通常会做出以下两个合理假设,以使无标签数据中可用的分布 $p(x)$ 的属性能够影响 $p(y|x)$:
- 流形假设 :数据项 $x \in X$ 位于嵌入在高维空间中的低维流形上。有两种解释方式:一是数据可能不考虑类别,位于嵌入在高维空间中的一个全局低维流形上;二是每个类别的数据可能位于其特定的流形上,不同类别的流形可能相交也可能不相交。无论哪种情况,使用有标签和无标签数据都可以更准确地确定类之间的决策边界。
- 平滑性假设 :如果在高密区域中的两个点 $x_1$ 和 $x_2$ 根据 $X$ 上的给定距离度量(可能依赖于流形)很接近,那么它们对应的输出标签也可能很接近或相同。换句话说,类之间的决策边界将位于低密区域。也可以表述为,如果两点之间存在一条始终位于同一连接高密区域内的轨迹,那么这两点可能具有相同的标签。

2. 半监督学习的历史研究方法
<
STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动内容概要:本文档为一份关于STM32电机控制的无传感器版本代码注释资源,聚焦于龙贝格观测器在永磁同步电机(PMSM)无感控制中的应用。内容涵盖三电阻双通道AD采样技术、前馈控制、弱磁控制及斜坡启动等关键控制策略的实现方法,旨在通过详细的代码解析帮助开发者深入理解基于STM32平台的高性能电机控制算法设计工程实现。文档适用于从事电机控制开发的技术人员,重点解析了无位置传感器控制下的转子初始定位、速度估算系统稳定性优化等问题。; 适合人群:具备一定嵌入式开发基础,熟悉STM32平台及电机控制原理的工程师或研究人员,尤其适合从事无感FOC开发的中高级技术人员。; 使用场景及目标:①掌握龙贝格观测器在PMSM无感控制中的建模实现;②理解三电阻采样双AD同步采集的硬件匹配软件处理机制;③实现前馈补偿提升动态响应、弱磁扩速控制策略以及平稳斜坡启动过程;④为实际项目中调试和优化无感FOC系统提供代码参考和技术支持; 阅读建议:建议结合STM32电机控制硬件平台进行代码对照阅读实验验证,重点关注观测器设计、电流采样校准、PI参数整定及各控制模块之间的协同逻辑,建议配合示波器进行信号观测以加深对控制时序性能表现的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值