本题目:
给定了n(n<=1000)个三元组(t,s,f)t代表在s点出现的时间,f代表走到f点之后小时,每走一个单位长度耗时为1,若s > f 代表逆向行走问能不能对于一个特定元组,与几个元组
在直线上相遇,相遇即存在(t , x) 同时同位置。
分析:
把每个元组转化成一个t 和x的线性方程, 我们发现方程 为 x = t - k 或者 x = k - t 的形式,当方程斜率相同,只有在k相同时,判定义域是否相同。
斜率不同找到唯一交点,判是否同在两个定义域中。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define rep1(i,x,y) for(int i=x;i<=y;i++)
#define rep(i,n) for(int i=0;i<(int)n;i++)
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 1e3 + 100;
struct node{
int t,s,f;
}a[N];
int n , cnt[N]={0};
int ins(int x1,int y1,int x2,int y2){
if(x2<=x1&&y1<=y2) return 1;
if(x1<=x2 && x2<=y1) return 1;
if(x1<=y2 && y2<=y1) return 1;
return 0;
}
void add(int i,int j){
cnt[i]++,cnt[j]++;
}
int main()
{
scanf("%d",&n);
rep1(i,1,n) scanf("%d %d %d",&a[i].t,&a[i].s,&a[i].f);
rep1(i,1,n) rep1(j,i+1,n){
if(a[i].s <= a[i].f && a[j].s <= a[j].f){
if(a[i].s - a[i].t == a[j].s - a[j].t && ins(a[i].t,a[i].t+a[i].f-a[i].s,a[j].t,a[j].t+a[j].f-a[j].s)) add(i,j);
}
else if(a[i].s <= a[i].f && a[j].s > a[j].f){
double t = a[j].s+a[j].t+a[i].t-a[i].s;
t/=2;
if(t>=a[i].t && t<=a[i].t+a[i].f-a[i].s && t>=a[j].t && t<=a[j].t+a[j].s-a[j].f) add(i,j);
}
else if(a[i].s > a[i].f && a[j].s <= a[j].f){
double t = a[i].s+a[i].t+a[j].t-a[j].s;
t/=2;
if(t>=a[j].t && t<=a[j].t+a[j].f-a[j].s && t>=a[i].t && t<=a[i].t+a[i].s-a[i].f) add(i,j);
}
else {
if(a[i].s+a[i].t == a[j].s+a[j].t && ins(a[i].t,a[i].t+a[i].s-a[i].f,a[j].t,a[j].t+a[j].s-a[j].f)) add(i,j);
}
}
rep1(i,1,n) {
if(i > 1) printf(" ");
printf("%d",cnt[i]);
} printf("\n");
return 0;
}