codeforces 589D (简单线性公式题目)

本题目:

给定了n(n<=1000)个三元组(t,s,f)t代表在s点出现的时间,f代表走到f点之后小时,每走一个单位长度耗时为1,若s > f 代表逆向行走问能不能对于一个特定元组,与几个元组

在直线上相遇,相遇即存在(t , x) 同时同位置。

分析:

把每个元组转化成一个t 和x的线性方程, 我们发现方程 为 x = t - k 或者  x = k - t 的形式,当方程斜率相同,只有在k相同时,判定义域是否相同。

斜率不同找到唯一交点,判是否同在两个定义域中。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define rep1(i,x,y) for(int i=x;i<=y;i++)
#define rep(i,n) for(int i=0;i<(int)n;i++)
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 1e3 + 100;
struct node{
   int t,s,f;
}a[N];
int n , cnt[N]={0};
int ins(int x1,int y1,int x2,int y2){
   if(x2<=x1&&y1<=y2) return 1;
   if(x1<=x2 && x2<=y1) return 1;
   if(x1<=y2 && y2<=y1) return 1;
   return 0;
}
void add(int i,int j){
   cnt[i]++,cnt[j]++;
}
int main()
{
   scanf("%d",&n);
   rep1(i,1,n) scanf("%d %d %d",&a[i].t,&a[i].s,&a[i].f);
   rep1(i,1,n) rep1(j,i+1,n){
       if(a[i].s <= a[i].f && a[j].s <= a[j].f){
           if(a[i].s - a[i].t == a[j].s - a[j].t && ins(a[i].t,a[i].t+a[i].f-a[i].s,a[j].t,a[j].t+a[j].f-a[j].s)) add(i,j);
       }
       else if(a[i].s <= a[i].f && a[j].s > a[j].f){
            double t = a[j].s+a[j].t+a[i].t-a[i].s;
            t/=2;
            if(t>=a[i].t && t<=a[i].t+a[i].f-a[i].s && t>=a[j].t && t<=a[j].t+a[j].s-a[j].f) add(i,j);
       }
       else if(a[i].s > a[i].f && a[j].s <= a[j].f){
            double t = a[i].s+a[i].t+a[j].t-a[j].s;
            t/=2;
            if(t>=a[j].t && t<=a[j].t+a[j].f-a[j].s && t>=a[i].t && t<=a[i].t+a[i].s-a[i].f) add(i,j);
       }
       else {
            if(a[i].s+a[i].t == a[j].s+a[j].t && ins(a[i].t,a[i].t+a[i].s-a[i].f,a[j].t,a[j].t+a[j].s-a[j].f)) add(i,j);
       }
   }
   rep1(i,1,n) {
       if(i > 1) printf(" ");
       printf("%d",cnt[i]);
   }  printf("\n");
   return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值