codeforces 593E(矩阵类题目)

给定一个R * C不超过20的图,一开始人在(1,1)然后给出之多100000个时间序列(按时间递增给出),

每个时间可能发生的事情是在某个位置出现猫(有猫的地方人不能存在),猫在某个位置消失,询问人从1,1点在1时刻出发在t时刻可以走到(x , y)的所有可行性路径数目。

分析:

典型的矩阵转移题目。

初始时用一个人d[ i ][ j]....代表人从1,1出发走了当前步数,可以走到1的路径数为i,走到2的路径数目为j,.......

那么转移矩阵 m[ ][ ] 代表的是从i - > j的所有可行路经数目,中间加上矩阵快速幂即可。

#include <bits/stdc++.h>

#define fst first
#define snd second
#define ALL(a) a.begin(), a.end()
#define clr(a, x) memset(a, x, sizeof a)
#define rep(i,x) for(int i=0;i<(int)x;i++)
#define rep1(i,x,y) for(int i=x;i<=(int)y;i++)
#define LOGN  22
typedef long long ll;
using namespace std;

const int mod = 1e9 + 7;
struct Matrix{
   int m[22][22];
   void standard(int n){
       rep(i,n) rep(j,n) m[i][j]=(i==j);
   }
   void show(int n){
       rep(i,n){
          rep(j,n) cout<<m[i][j]<<" ";
          cout<<endl;
       }
   }
};
int n;
Matrix mul(Matrix A,Matrix B){
    Matrix C;
    rep(i,n) rep(j,n){
       C.m[i][j] = 0;
       rep(k,n) C.m[i][j] =(C.m[i][j] + (ll)A.m[i][k]*B.m[k][j]%mod)%mod;
    }
    return C;
}
Matrix pow_(Matrix A,int c){
    Matrix ret ; ret.standard(n);
    while(c > 0){
        if(c & 1) ret=mul(ret,A);
        A=mul(A,A);
        c>>=1;
    }
    return ret;
}
const int dx[]={-1 , 0 ,1, 0};
const int dy[]={ 0 , 1 ,0,-1};
int r , c , q;
int main()
{
   scanf("%d %d %d",&r,&c,&q);
   n = r * c;
   Matrix A; A.standard(n);
   rep(i , r) rep(j , c){
       rep(d , 4){
           int ni = i + dx[d] , nj = j + dy[d];
           if(ni>=0 && ni < r && nj >= 0 && nj < c)
             A.m[i*c + j][ni*c+nj]=1;
       }
   }
   Matrix all , now; all.standard(n);
   int pret = 1 , vis[22]={0};
   while(q--){
      int cmd,x,y,t;
      scanf("%d %d %d %d",&cmd,&x,&y,&t),--x,--y;
      rep(i , n) rep(j , n){
              if(!vis[i] && !vis[j]) now.m[i][j] = A.m[i][j];
              else now.m[i][j] = 0;
      }
      all = mul(all , pow_(now , t - pret));
      pret = t;
      if(cmd == 2) vis[x*c + y] = 1;
      else if(cmd == 3)vis[x*c + y] = 0;
      else if(cmd == 1) printf("%d\n",all.m[0][x*c + y]);
   }
   return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值