15、国际数据空间信息模型:主权数据交换的语义词汇表解析

国际数据空间信息模型:主权数据交换的语义词汇表解析

1. 数据生态与 IDS 使用合同

在当今数据驱动的时代,对于数据的保护和有效利用需求日益增长。随着越来越多自主运行系统的出现,在数据模型和实现方面带来了额外的负担。IDS 使用合同展示了如何将不同的规范组合成一个全面的解释。在不同领域中,我们可以观察到类似的想法和模式出现,这种集成的方法可以作为不同群体之间的桥梁。其结果有可能改变我们处理数字信息的方式,以及可信系统如何从技术上执行初始限制。

2. 策略信息点(PIP)

2.1 PIP 的概念

策略信息点(PIP)是决策系统中的一个抽象角色,与其他策略点类似,它并非具体的软件资产。一个应用程序可以同时充当 PIP、策略决策点(PDP)和策略执行点(PEP)。将这些不同的术语分离,有助于定义决策工作流中的不同能力和责任,明确各个组件执行的任务。

在国际数据空间(IDS)中,PIP 提供评估正式合同条件是否满足所需的信息。例如,如果使用时间被限制在一定期限内,PIP 会提供已使用的时间。需要注意的是,PIP 本身并不做出决策,它只是提供与时间服务等的接口,不做进一步的指示。

2.2 PIP 的实现形式

PIP 在 IDS 生态系统中有多种实现形式:
- API 形式 :作为连接内部功能的 API。
- 独立应用程序 :在网络中作为独立的应用程序,为多个连接器及其使用执行系统提供所需信息。

从操作模式上,PIP 组件也有所不同。前者情况下,PIP 是连接器功能架构的一部分或靠近连

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值