回溯——7.子集II

力扣题目链接

给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:

  • 输入: [1,2,2]
  • 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]

解题思路总结:

  1. 排序:首先对数组进行排序,便于之后的重复元素跳过处理。
  2. 回溯法:通过递归遍历所有可能的子集,并在每次递归中将当前路径加入结果集。
  3. 去重:利用排序后的数组,结合 used 数组,通过条件 nums[i] == nums[i-1]not used[i - 1],来跳过同一层中重复的元素,从而避免生成重复子集。

完整代码如下:

class Solution:
    def subsetsWithDup(self, nums):
        result = []
        path = []
        used = [False] * len(nums)
        nums.sort()  # 去重需要排序
        self.backtracking(nums, 0, used, path, result)
        return result

    def backtracking(self, nums, startIndex, used, path, result):
        result.append(path[:])  # 收集子集
        for i in range(startIndex, len(nums)):
            # used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过
            # used[i - 1] == False,说明同一树层 nums[i - 1] 使用过
            # 而我们要对同一树层使用过的元素进行跳过
            if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
                continue
            path.append(nums[i])
            used[i] = True
            self.backtracking(nums, i + 1, used, path, result)
            used[i] = False
            path.pop()
def subsetsWithDup(self, nums):
    result = []
    path = []
    used = [False] * len(nums)
    nums.sort()  # 去重需要排序
    self.backtracking(nums, 0, used, path, result)
    return result
  • result:用于存储所有不重复的子集。
  • path:用于存储当前正在构建的子集。
  • used:这是一个布尔数组,用来标记数组中的每个元素是否已经在当前路径(path)中使用过。
  • nums.sort():在处理重复元素时,排序是必须的,因为只有在数组有序的情况下,才能通过简单的条件判断去除重复子集。
def backtracking(self, nums, startIndex, used, path, result):
    result.append(path[:])  # 收集子集
  • backtracking 函数是回溯算法的核心。
  • startIndex:控制下一步递归从哪里开始选择元素。
  • 每次递归时,当前的 path(表示当前正在构建的子集)会被复制并加入到 result 中,表示我们收集了一个子集。
for i in range(startIndex, len(nums)):
    # used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过
    # used[i - 1] == False,说明同一树层 nums[i - 1] 使用过
    # 而我们要对同一树层使用过的元素进行跳过
    if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
        continue
  • 这里的 for 循环遍历数组的每一个元素,从 startIndex 开始。
  • if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:这个条件判断用于跳过重复的元素,以避免生成重复的子集。具体解释如下:
    • i > 0:确保访问 nums[i-1] 时不会越界。
    • nums[i] == nums[i - 1]:如果当前元素和前一个元素相同,则可能会生成重复子集。
    • not used[i - 1]:前一个元素如果在同一层中没有被使用过(即没有在当前路径中被选择),则说明我们在当前层次中遇到了重复元素,此时应该跳过,以防止生成重复子集。
    path.append(nums[i])
    used[i] = True
    self.backtracking(nums, i + 1, used, path, result)
    used[i] = False
    path.pop()
  • path.append(nums[i]):将当前元素加入到当前路径中。
  • used[i] = True:标记当前元素已经在当前路径中使用。
  • self.backtracking(nums, i + 1, used, path, result):递归调用,开始从下一个索引 i + 1 继续构造子集。
  • used[i] = False:回溯后,将当前元素标记为未使用,以便在其他路径中使用。
  • path.pop():回溯的关键步骤,撤销之前的选择,恢复状态,以便继续构造其他子集。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值