咖友:X零蛋丨只靠“威尔逊算法”,知乎危险了?

PMCAFF(pmcaff.com)是在中国非常流行的产品经理社区。汇集160000+会员,8000+业界大咖,致力于为产品人提供专业的产品沙龙、课程培训、求职招聘等服务。

本文由PMCAFF会员X零蛋撰写,未经许可,禁止转载。

● ● ●

PMCAFF产品经理社区的咖友提问:知乎上对于回答的排序是如何设置的?

知乎回答的排序是依据哪些依据进行排序的?

 X零蛋  若古 产品经理

首先抛出一个知乎使用的“威尔逊算法”。

科学说明版:此算法以赞同,反对的票数统计为基础数据。每个可记录数据的都是“0-1”的独立事件,符合“泊松分布”,于是该数据很容易归类于“二项分布”里。在二项分布里找相应的数据处理模型,威尔逊算法的输入是发生概率,输出是置信区间,如果要做数据对比,则选择下限数据。

举个栗子版:有95%的发生概率,好评率在[70%,80%],那么可以选择70%作为对比评价数据。

传说中的“威尔逊算法”如下:

其中 u 为加权赞同票数,v 为加权反对票数, Zα为参数,另外,默认所有回答者对自己的回答投了一票赞同,所以 u 至少为 1。

如图所示

但是,知乎整个社区运营仅仅依靠算法么!?

其实并不然!

首先,排序是对内容优先级的筛选,而社区运营中,内容和用户是两条腿。所以排序涉及两方面:回答权重,用户权重。

排序是以内容权重为主,加入了用户权重的分析,力图能够制造“优胜劣存”(贪心造成的)的社区环境。

  • 内容权重

威尔逊算法中,回答的赞同或反对指向是:是否获取到内容消费的匹配用户。

那么继续分析的前提是:确认用户的现状,所以一旦用户从优质稀释到一般之后,原先的优质内容并不一定能匹配现在用户。

故产品的目标人群定位是第一位的,然后再是算法。

而仅仅靠算法想调动所有用户或者绝大多数用户,是不可能的,算法的默认条件是:选取一定level的用户群体,然后再计算。

一个算法只能解决一个问题,不可能把社区(类似小社会)的所有问题,做一个大一统的解决。

因此,我赞同建立社区“副本”的重要性,就是社区的阶层性,一个阶层一个算法。

  • 用户权重

对于用户权重,这里有两种观点:

>>用户权重的建立:百害而无一利(不利于UGC大量生产)

1)会产生“马太效应”,新进用户的存在感太弱——内容分量低

2)领域类意见领袖的赞同,基本可以与首页推荐挂钩——社区的用户属性强

>>用户权重的建立:双手赞同(利于优质资源的沉淀)

1)区分领域类用户,便于用户回答的差异化评价——承认用户权重属性对社区的利好

2)加重内容的明星效应,能够产生爆点内容——加强内容生产的用户关系链

某种程度上来说,我是支持用户权重的建立,社区“劣币驱逐良币”的解决一定需要解决社区的阶层性,而阶层性一定得承认用户权重的差异性,理清社区之后,才知道资源怎么流转。

资源包括内容和用户,而运营的后期,用户是关键,所以社区进入稳定期后,要建立用户权重。

  • 总结

知乎回答的排序设置,不仅仅是算法,而是社区运营的一个重大决策,需要负责人对社区有通体的了解,对内容和用户发展有个明晰的方向,如果仅仅觉得这是技术的事,那么离“死亡”也就不远了。

本文来自PMCAFF产品经理社区(www.pmcaff.com),不代表PMCAFF观点和立场,未经许可,禁止转载。

● ● ●

最酷的产品经理都在读

百度VS谷歌,搜索质量评判也要讲基本法

微信充值页面为啥长这样?(多图)

8个直播底层支撑的创业机会,你都抓住了吗?

点击

阅读原文

了解更多详情

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值