cpu load是什么?

目录

前言:

1. cpu load

2. cpu使用率

3. linux得到cpu核数

4. mac系统获得cpu信息


前言:

调研监控,看到cpu load。

一般我们看cpu load是使用top命令。

通过uptime或者top命令就可以显示出,平均负载的内容如下:

top

Load Avg: 2.83, 3.19, 2.97

uptime

16:49  up  6:54, 2 users, load averages: 2.63 3.13 2.95 

mac不行,在linux可以:

cat /proc/loadavg 

结果:0.03 0.09 0.13 1/1882 27468

三个数字分别代表了一分钟,五分钟和十五分钟三个时间段内的CPU负载的平均值,而数字越低越好。数字越高表示系统出现了问题或机器过载。

Unix将CPU负载定义为运行队列的长度:当前正在运行的进程数与正在等待(排队)的进程数之和。

1. cpu load

理想情况:

一个核心被一个进程占用,以单核为例子。

单核最好为0.7以内理想,如果为1.0,需要查找问题原因并立即解决。否则,你的服务器可能在任何时候出现性能问题。

如果为5.0,那么可能系统马上就要崩溃了!千万不能到5.0

如果是多核,那么上面数字乘以逻辑核心数量,就是临界值。比如双核就是负载尽量不要高于2.

比如:如果你只有2个核心,依然跑4个进程,这就意味着有一半进程在某一个时刻抢不到CPU,这时候Load还是4,如果是短期状态还无所谓,如果长期是这个状态你就要注意了。

2. cpu使用率

使用率这个要结合时间片来说,影响使用率高低的因素不是LOAD的多少,而是在分配给某个进程时间片时,这个进程是否使用了CPU的计算能力。

如果没有使用计算能力,那么这个时间这个线程空闲的就是0%。但是load还是不变的。

从计算机角度来说,单核心CPU,假设1秒钟分为100个时间片,如果2个任务,第一个任务用了5个时间片执行完成,另外一个任务用了15个时间片执行完成,所以如果统计周期是1秒,那么这1秒内的CPU使用率就是20%(剩下的时间啥事没干)

CPU利用率高不一定负载高。利用率是一段时间内CPU被占用的情况。
CPU负载高利用率低:说明等待执行的任务很多,但是通常任务多CPU使用率也会比较高,如果低就说明CPU根本没工作,哪些很多的任务处于等待状态,可能进程僵死了可以通过命令ps –axjf查看是否存在D状态的进程,该状态时不可中断的睡眠状态。这种状态无法被KILL。而有时候你通过top命令也看不出来,只能显示LOAD高,但是没有哪个进程的CPU使用率明显高,你可以通过ps –ux来查看。
CPU利用率高负载低:说明任务少,但是任务执行时间长,有可能是程序本身有问题,如果没有问题那么计算完成后则利用率会下降。

这边的状态:(可运行分为正在运行进程和正在等待CPU的进程,状态为R;不可中断则是它正在做某些工作不能被中断比如等待磁盘IO等,其状态为D),它是从另外一个角度体现CPU的使用状态。

这部分转自:https://www.cnblogs.com/rexcheny/p/9382396.html

3. linux得到cpu核数

获得系统的CPU信息

cat /proc/cpuinfo 


得到CPU核数  :下面两个均可

grep 'model name' /proc/cpuinfo | wc -l

cat /proc/cpuinfo| grep "cpu cores"| uniq 

获得有几个物理CPU,可能有的是双路CPU(一般都是1个):

cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l 

查看逻辑核心数

cat /proc/cpuinfo| grep "processor"| wc -l 

4. mac系统获得cpu信息

这些无法在linux上用

查看物理CPU核心个数:

sysctl hw.physicalcpu

hw.physicalcpu: 4

查看逻辑CPU核心个数:

sysctl hw.logicalcpu

查看硬件信息:

system_profiler SPHardwareDataType

思考:

I/O占用cpu么? 

<think>嗯,用户问的是libtorch1.13.0中的load函数。我需要先回忆一下libtorch的相关知识。libtorch是PyTorch的C++版本,对吧?所以它的API应该和Python版的PyTorch类似,但可能会有一些C++特有的用法。 首先,用户想知道load函数的具体情况。在PyTorch中,模型的保存和加载通常使用torch.save和torch.load。那么在libtorch中,对应的应该是torch::save和torch::load函数。不过,可能需要确认一下C++ API的命名空间和参数类型。 记得在C++中,模型的加载可能需要通过反序列化来实现。比如,torch::jit::load函数用于加载ScriptModule,也就是TorchScript模型。用户可能是在问如何加载训练好的模型,所以需要区分两种情况:加载整个模型还是仅加载状态字典。 接下来,要确认libtorch1.13.0的版本是否有变化。查看文档的话,可能发现torch::jit::load的用法是接受一个文件路径,返回一个ScriptModule。如果是加载状态字典,可能需要使用torch::serialize::InputArchive,然后调用model.load(archive)。 另外,用户可能需要示例代码来说明具体用法。这时候要确保代码中的语法正确,比如正确的命名空间和使用方式。例如,加载整个模型的话,使用torch::jit::load("model.pt"),而加载状态字典可能需要创建一个InputArchive对象,然后读取文件,并加载到模型中。 还要注意错误处理,比如文件是否存在,模型是否兼容当前版本的libtorch。这些可能在代码中需要try-catch块,但用户的问题可能暂时不需要这部分,不过可以提到需要注意的点。 总结下来,用户的问题需要分步骤回答:首先介绍load函数的作用,然后说明在libtorch中的两种常见情况,最后给出示例代码。同时,需要注意语法正确,比如C++中的正确函数调用方式,以及文件路径的处理。此外,提醒用户关于设备的问题,比如加载到CPU或GPU可能需要额外的参数。</think>在LibTorch 1.13.0中,`torch::jit::load()` 是用于加载序列化模型的核心函数。以下分步骤说明其用法和注意事项: --- ### 1. 函数定义 ```cpp torch::jit::script::Module torch::jit::load( const std::string& filename, torch::Device device = torch::kCPU ) ``` - **作用**:加载通过 `torch.jit.save()` 或 `torch::jit::save()` 序列化的模型 - **参数**: - `filename`:模型文件路径(通常为 `.pt` 或 `.pth` 扩展名) - `device`:目标设备(默认为CPU,可用 `torch::kCUDA` 加载到GPU) --- ### 2. 基本用法示例 ```cpp #include <torch/script.h> // 必须包含的头文件 try { // 加载模型到CPU torch::jit::script::Module module = torch::jit::load("model.pt"); // 加载到GPU(需确保CUDA可用) // torch::jit::script::Module module = torch::jit::load("model.pt", torch::kCUDA); std::cout << "模型加载成功" << std::endl; } catch (const c10::Error& e) { std::cerr << "加载失败: " << e.what() << std::endl; } ``` --- ### 3. 关键注意事项 1. **模型格式要求**: - 必须是通过TorchScript序列化的模型 - Python端保存方式应为: ```python traced_script_module.save("model.pt") ``` 2. **设备兼容性**: ```cpp // 如果原始模型在GPU上训练,加载时需要指定map_location auto module = torch::jit::load("gpu_model.pt", torch::kCPU); ``` 3. **异常处理**: - 文件不存在会抛出 `c10::Error` - 版本不匹配可能导致加载失败(需确保LibTorch版本与模型保存时的PyTorch版本一致) --- ### 4. 加载参数字典(非完整模型) 如果需要单独加载参数: ```cpp torch::serialize::InputArchive archive; archive.load_from("state_dict.pt"); model.load(archive); // model需提前定义好结构 ``` --- ### 5. 版本对应关系 - LibTorch 1.13.0 对应 PyTorch 1.13.0 - 必须与Python端训练时使用的PyTorch版本严格一致,否则可能出现兼容性问题 建议通过官方文档验证API细节: $$ \text{参考链接:https://pytorch.org/cppdocs/api/namespace_torch__jit.html} $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值