机器视觉
文章平均质量分 78
kq_zhou
这个作者很懒,什么都没留下…
展开
-
快速高斯模糊
高斯模糊是最常见的模糊方式之一,它在机器视觉领域有广泛的应用。对一个图像做高斯模糊,就是用一个高斯窗和图像中每个点做卷积的计算,根据高斯窗大小的不同,可以得到不同精度的模糊效果。其中的主要运算过程就是卷积的运算,它涉及了大量的乘法和加法。因此,虽然高斯模糊在原理上非常简单,但在实际应用中,它却是图像处理中计算量的大头。因此,想办法去加速高斯模糊算法是非常有意义的。由于图像是二维的,所以原创 2015-01-14 14:50:56 · 2435 阅读 · 0 评论 -
摄像机模型与标定
为了方便自己回忆,本文从定性的角度描述了摄像机是如何把真是世界的三维坐标变成图像中的二维坐标的。光线从物体发射开始,透过透镜到达摄像机的成像平面,从而形成摄像机捕捉的图像。通过这一句话就可以简单描述摄像机捕捉图像的过程。如果你觉得这样的描述不够具体,可以参考小孔成像模型。然而,由于真是的小孔无法为快速曝光收集足够的光线,所以摄像机引入了透镜来收集更多的光线。引入透镜的过程,由于加入了仪器和透镜本身的误差,使得原本简单的几何模型变得复杂,这就是所有摄像机收集的图像都需要标定和校正的原因。原创 2014-12-23 13:03:31 · 1067 阅读 · 0 评论 -
基于RobHess源码的sift全景图像合成过程分析
在我改进的RobHess源码中,拼接的顺序大致如下: 1.读取图片,使用opencv的undistort函数来对摄像机拍摄的图片进行畸变矫正。 2.为每幅图想调用sift_features函数,检测特征点。 3.用第i幅图的特征点建立kd树,用第i+1幅图的特征点在建立好的kd树进行搜索,初步筛选出第一批特征点。 4.在之前筛选出的特征点的基础上,用RANSAC算法进行二次筛选,并计算得出每原创 2015-03-25 20:45:28 · 1216 阅读 · 0 评论