因为自己的数学功底非常差,所以只能从工程应用的角度来看这两个智能学习算法。
分类模型分为判别模型和生成模型:
判别模型的思路是我先根据已知的数据生成一个分类器,遇到要分类的对象,我们首先提取这个对象的特征,然后把这些特征放入之前的分类器中,从而得到分类结果。
生成模型的思路是假定我要把所有数据分成A,B两类,那么我根据已知属于A类的数据,来生成一个代表A类的模型,再根据已知属于B类的数据,生成一个代表B类的模型。当遇到要分类的对象时,我把这个对象的特征提取出来,分别放到A类模型和B类模型中计算,得到两个概率,哪个的概率大,那么这个对象就属于哪类。
从贝叶斯公式中来看,等式左边就代表了判别模型,等式右边就代表了生

本文从工程应用角度探讨高斯判别分析和朴素贝叶斯分类器,适合数学基础较弱的读者了解这两种智能学习算法。
最低0.47元/天 解锁文章
1028

被折叠的 条评论
为什么被折叠?



