文章标题

11/11 当天,一直在测试在更新时的阈值数,也就是

if (labelcount >= l_thread && sum(F(fi, fj) >= label_thread) >= 1)

这个的阈值label_thread。
发现阈值越小 更新数就越多,然而更新的太多,但是程序效果就很差。所以在数据集TDT2上阈值设置为0.7-0.9 就会变好,但是还是没其他算法效果好,所以总体效果还是不行。
为了转化思路,查看其他类似程序,突然发现一种算法写的很我们的算法流程很相似,我打算今天来实践一下。
先整理一下程序思路:

Created with Raphaël 2.1.0 Input 从无标记数据中更新有标记数据 无标记数据是否为空? 结束 yes no

的之前的思路是输入W之后更新所有数据,利用之前的F矩阵和当前F矩阵之间的差别来判断程序是否收敛,中间还加入了一些CLASS MASS Normalization. 结果都是没其他对比程序效果好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值