标签传播笔记

4.2 图拉普拉斯
我们引入一个重要指标:组合拉普拉斯 。 D表示对角度矩阵,其中 Dii=jWij 为节点i的度。拉普拉斯定义为 =DW .对于能量函数满足:

E(f)=12ijwij(f(i)f(j))2=fTf

高斯随机域可以写成:
p(f)=1ZeβfTf

当W是对称且非负时拉普拉斯矩阵为半正定。
4.3 调和函数
最小能量函数 f=argminfL=YLE(f) 是调和的。它在未标记数据U上满足 f=0 ,等于在有标记数据L上的Yl。我们使用h表示调和函数,调和属性意味着h(i)的值在每个未标记点i上是图中其近邻的平均值:
h(i)=1Diijiwijh(j),foriU

其和我们关于图的平滑度的先验是一致的。因为调和函数的最大原则,h是特殊的并满足 0h(i)1foriU .
为了计算调和的解,我们将权重矩阵W划分成4块对于L 和U:
W=WLLWULWLUWUU

调和解 h=0 服从 hL=YL 由下列式子给出:
hU=(DUUWUU)1WULYL=(UU)1ULYL=(IP1UU)PULYL

最后一个等式中P = D-1W是图中的转移概率。
4.4 解读和连接
调和函数在不同的基础方式中,和不同的视角提供了一些补充技术集合来推理这个方法。
4.4.1 随机游走
在图中假设一个随机游走。从未标记节点i开始,我们移一步具有概率Pij 到节点j。当我们到达一个标记节点游走就停止。那么h(i)是随机游走的概率,从节点i开始,到达一个具有标签1的标记节点。这里标记节点可被视为“吸收边界”对于随机游走。 这里写图片描述
4.4.2 电网
我们也可以将框架视为电网。假设图中的边当做电阻具有电导系数W。节点ij之间的阻力为1/wij。我们连接正标签节点一个1伏的电压,负标签节点电压为0。那么hU 是在结果电网中的未标记节点的电压。进一步hU最小电网中能量损耗。能量损耗就是如4.1节中的E(h).调和属性遵循Kirchoff’s 和Ohm’s 法则, 最大化原则显示了这和4.1节得到的结果是完全一样的
4.4.3 图最小分割
调和函数可被视为一个soft 版本的图最小分割。在图分割问题中去找去

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值