普通人写的二分查找和高手写的二分查找

普通人的二分查找

int primary_binary_search(int* nums, int numsSize, int target) {
    if (numsSize <= 0 || nums == NULL) {
        return -1;
    }
    if (target < nums[0] || target > nums[numsSize - 1]) {
        return -1;
    }
    if (target == nums[0]) {
        return 0;
    }
    if (target == nums[numsSize - 1]) {
        return numsSize - 1;
    }
    int head = 0;
    int tail = numsSize - 1;
    int mid = (head + tail) / 2;

    while (mid != head) {
        if (target == nums[mid]) {
            return mid;
        } else if (target > nums[mid]) {
            head = mid;
        } else {
            tail = mid;
        }
        mid = (head + tail) / 2;
    }

    return -1;
}

高手写的二分查找

int binary_search(int *nums, int numsSize, int target) {
    int head = 0;
    int tail = numsSize - 1;
    int mid;
    while (head <= tail) {
        mid = (head + tail) >> 1;
        if (nums[mid] == target) return mid;
        if (nums[mid] < target) {
            head = mid + 1;
        } else {
            tail = mid -1;
        }
    }
    return -1;
}

差别在哪里?

  1. 前一个程序冗长
if (target < nums[0] || target > nums[numsSize - 1]) {
        return -1;
    }
    if (target == nums[0]) {
        return 0;
    }
    if (target == nums[numsSize - 1]) {
        return numsSize - 1;
    }

上面的这种特殊情况判断真的需要吗?
真的不需要,原因:
1)More Code,More bug.
2) 二分查找的效率非常高,从一个32位的最大长度的数组中查找仅需要32次二分,没必要为了微不足道的效率,添加特殊处理。
3)特殊处理影响代码的美观与整洁。

  1. 效率

1)位运算效率更高。

mid = (head + tail) / 2;

替换为:

mid = (head + tail) >> 1;

2)不做任何的重复

head = mid;

提换为:

head = mid + 1;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值