LRU cache

57 篇文章 0 订阅

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

public class LRUCache {
    
    private class Node{
        Node prev;
        Node next;
        int key;
        int value;

        public Node(int key, int value) {
            this.key = key;
            this.value = value;
            this.prev = null;
            this.next = null;
        }
    }
    
    private int capacity;
    private HashMap<Integer, Node> hs = new HashMap<Integer, Node>();
    private Node head = new Node(-1, -1);
    private Node tail = new Node(-1, -1);
    
    public LRUCache(int capacity) {
        this.capacity = capacity;
        tail.prev = head;
        head.next = tail;
    }
    
    public int get(int key) {
        if( !hs.containsKey(key)) {
            return -1;
        }

        // remove current
        Node current = hs.get(key);
        current.prev.next = current.next;
        current.next.prev = current.prev;

        // move current to tail
        move_to_tail(current);

        return hs.get(key).value;
    }
    
    public void set(int key, int value) {
        if( get(key) != -1) {
            hs.get(key).value = value;
            return;
        }

        if (hs.size() == capacity) {
            hs.remove(head.next.key);
            head.next = head.next.next;
            head.next.prev = head;
        }

        Node insert = new Node(key, value);
        hs.put(key, insert);
        move_to_tail(insert);
    }
    
    private void move_to_tail(Node current) {
        current.prev = tail.prev;
        tail.prev = current;
        current.prev.next = current;
        current.next = tail;
    }
}

LRU Cache是一种常见的缓存淘汰策略,LRU代表最近最少使用。在Java中,可以使用不同的方式来实现LRU Cache。 引用\[1\]中的代码展示了一种自定义的LRU Cache实现,使用了一个自定义的LRUCache类,并在main方法中进行了测试。在这个实现中,LRUCache类继承了LinkedHashMap,并重写了removeEldestEntry方法来实现缓存的淘汰策略。 引用\[2\]中的代码展示了另一种自定义的LRU Cache实现,同样使用了一个自定义的LRUCache类,并在main方法中进行了测试。这个实现中,LRUCache类同样继承了LinkedHashMap,并重写了removeEldestEntry方法来实现缓存的淘汰策略。 引用\[3\]中的代码展示了使用ArrayList实现LRU Cache的方式。在这个实现中,LRUCache类使用了一个ArrayList来存储缓存数据,并通过get和put方法来操作缓存。 总结来说,LRU Cache的Java实现可以使用自定义的类继承LinkedHashMap并重写removeEldestEntry方法,或者使用ArrayList来存储缓存数据。具体的实现方式可以根据需求和偏好选择。 #### 引用[.reference_title] - *1* *2* [Java——LRUCache](https://blog.csdn.net/m0_60867520/article/details/128361042)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LRUCache的Java实现](https://blog.csdn.net/qq_39383118/article/details/103535985)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值