在上一章节聊完离散型二维随机变量,这一章节我们来到连续型随机变量。由于连续型随机变量的计算过程经常涉及积分运算,而连续型二维随机变量必然涉及到二重积分的运算。所以对于定积分不是很了解的朋友,建议先回去看看线性代数里相关章节的内容。
关于连续型二维随机变量
概率密度函数
如果说对于定积分
∫
f
(
x
)
d
x
\int f(x) dx
∫f(x)dx ,它所表示的含义如果说是求函数面积的话。
那么对于二重积分
∫
f
(
x
,
y
)
d
x
d
y
\int f(x, y) dx dy
∫f(x,y)dxdy,它所表达的更多接近于求体积这样一个概念。
对于概率论来说,一维连续型随机变量的基本概念,与二维连续型随机变量的概念,很多是一样或者相似的。所以我在这里不做过多的说明,只是这里涉及到了二重积分,所以对于不明白二重积分怎么使用和运算的朋友,请参考教材或者其他有关线性代数的说明。
概率求和
至于说基本性质有几点是需要记住的,其中之一就是对于所有的概率事件,求和后不能大于1.
∫ ∫ f ( x , y ) d x d y = 1 \int \int f(x,y) dx dy = 1 ∫∫f(x,y)dxdy=1
样本概率
P
{
(
X
,
Y
)
∈
D
}
P \{ (X, Y) \in D \}
P{(X,Y)∈D}
对于样本(X, Y) 只要它属于样本集合D,那么样本的概率
P
{
(
X
,
Y
)
}
P \{ (X, Y)\}
P{(X,Y)} 等于:
P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P \{ (X, Y) \in D \} = \iint_{D} f(x,y) dx dy P{(X,Y)∈D}=∬Df(x,y)dxdy
也就是,对点(X,Y)的积分。
边缘概率密度
这里我们从离散型的概念中引入,也就是说对于连续型的来说,它对于X轴和Y轴上的边缘概率密度,分别等于:
f x ( X ) = ∫ f ( x , y ) d y f_x(X) = \int f(x, y) dy fx(X)=∫f(x,y)dy
以及
f y ( Y ) = ∫ f ( x , y ) d x f_y(Y) = \int f(x, y) dx fy(Y)=∫f(x,y)dx
条件概率密度
从条件概率的一般公式,可以推导出条件概率密度为:
f X ∣ Y ( x ∣ y ) = f ( x , y ) f y ( y ) f_{X | Y} (x | y) = \frac{f(x, y)}{f_y{(y)}} fX∣Y(x∣y)=fy(y)f(x,y)
以及:
f Y ∣ X ( y ∣ x ) = f ( x , y ) f x ( x ) f_{Y | X} (y | x) = \frac{f(x, y)}{f_x{(x)}} fY∣X(y∣x)=fx(x)f(x,y)
独立性
从离散型的独立型条件,我们也可以得出连续型的独立性条件:
f ( x , y ) ⇋ f x ( x ) f y ( y ) f(x, y) \leftrightharpoons f_x(x) f_y(y) f(x,y)⇋fx(x)fy(y)
来做点练习题吧!
设二维随机变量(X, Y)的概率密度为
f ( x , y ) = { k ( 6 − x − y ) 0 < x < 2 , 2 < y < 4 0 e l s e f(x, y) = \left\{\begin{matrix} k(6 - x -y) & 0 < x < 2, 2 < y < 4 \\ 0 & else \end{matrix}\right. f(x,y)={k(6−x−y)00<x<2,2<y<4else
(1) 确定常数k
(2) P { X < 1 , Y < 3 } P\{ X < 1, Y < 3 \} P{X<1,Y<3}
(3)求 (X, Y) 的边缘概率密度
(4)判断X和Y是否相互独立
解(1)
从题干可以得知:
f ( x , y ) = ∬ k ( 6 − x − y ) d x d y = 1 f(x, y) = \iint k(6 - x - y) dx dy = 1 f(x,y)=∬k(6−x−y)dxdy=1
所以,我们对上式求它的二重定积分(Double Integral Calculation),可以有:
k ∫ 2 4 d y ∫ 0 2 ( 6 − x − y ) d x k \int_{2}^{4} dy \int_{0}^{2} (6-x-y) dx k∫24dy∫02(6−x−y)dx
先对X方向求积分,于是有:
( 6 − y ) x − 1 2 x 2 ∣ 0 2 = 10 − 2 y (6-y)x - \frac{1}{2}x^2 \bigg|_{0}^{2} = 10 - 2y (6−y)x−21x2∣∣∣∣02=10−2y
得到关于X的定积分后,带入上面的二重积分,于是可以变成这样:
k ∫ 2 4 ( 10 − 2 y ) d y = k ( 10 y − y 2 ) ∣ 2 4 = 8 k = 1 k \int_{2}^{4} (10 -2 y) dy = k (10y - y^2) \bigg|_2^4 = 8k = 1 k∫24(10−2y)dy=k(10y−y2)∣∣∣∣24=8k=1
于是 k = 1 / 8 k = 1/8 k=1/8
解(2)
把问题给出的关于X和Y的范围代入到原题干中,于是我们得到一个新的二重积分:
P { X < 1 , Y < 3 } = 1 8 ∫ 3 2 ∫ 0 1 ( 6 − x − y ) d x d y P\{ X < 1, Y < 3 \} = \frac{1}{8} \int_3^2 \int_0^1 (6-x-y) dx dy P{X<1,Y<3}=81∫32∫01(6−x−y)dxdy
求解一下于是得到 3 / 8 3/8 3/8
解(3)
求二维连续型随机变量的边缘密度,我们直接带入公式:
由于,X轴的边缘密度公式为:
f x ( X ) = ∫ f ( x , y ) d y f_x(X) = \int f(x, y) dy fx(X)=∫f(x,y)dy
以及Y轴方向的边缘密度公式为:
f y ( Y ) = ∫ f ( x , y ) d x f_y(Y) = \int f(x, y) dx fy(Y)=∫f(x,y)dx
再代入本题中给出的已知参数,于是我们得到:
f
x
(
X
)
=
∫
2
4
f
(
x
,
y
)
d
y
=
1
8
∫
2
4
(
6
−
x
−
y
)
d
y
f_x(X) = \int_2^4 f(x,y) dy = \frac{1}{8} \int_2^4 (6 - x - y) dy
fx(X)=∫24f(x,y)dy=81∫24(6−x−y)dy
f
y
(
Y
)
=
∫
0
2
f
(
x
,
y
)
d
x
=
1
8
∫
0
2
(
6
−
x
−
y
)
d
x
f_y(Y) = \int_0^2 f(x,y) dx = \frac{1}{8} \int_0^2 (6 - x - y) dx
fy(Y)=∫02f(x,y)dx=81∫02(6−x−y)dx
分别求解一下,于是:
f x ( X ) = 3 − x 4 f_x(X) = \frac{3-x}{4} fx(X)=43−x
f y ( Y ) = 5 − y 4 f_y(Y) = \frac{5-y}{4} fy(Y)=45−y
解(4)
我们直接把刚才求解出来的边缘函数相乘,化简后看看是不是和原来的函数相同。发现不同,所以X和Y并不互相独立。