文章目录
一、二维随机变量
定义:设 X = X ( ω ) , Y = Y ( ω ) X=X( \omega),Y=Y(\omega) X=X(ω),Y=Y(ω)是定义在样本空间 Ω \Omega Ω上的两个随机变量,则称向量 ( X , Y ) (X,Y) (X,Y)为二维随机变量,或随机变量
定义:设二维随机变量 ( X , Y ) (X,Y) (X,Y),对任意实数 x , y x,y x,y,二元函数
F ( x , y ) = P { X ≤ x , Y ≤ y } , − ∞ < x , y < + ∞ F(x,y)=P \left\{X \leq x,Y \leq y\right\},-\infty<x,y<+\infty F(x,y)=P{
X≤x,Y≤y},−∞<x,y<+∞
称为二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数,或称随机变量 X X X和 Y Y Y的联合分布函数
分布函数 F ( x , y ) F(x,y) F(x,y)的性质
- 对任意 x , y x,y x,y,均有 0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y)\leq 1 0≤F(x,y)≤1
- F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,y)=F(x,-\infty)=F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(−∞,y)=F(x,−∞)=F(−∞,−∞)=0,F(+∞,+∞)=1
- F ( x , y ) F(x,y) F(x,y)关于 x x x和关于 y y y均单调不减
- F ( x , y ) F(x,y) F(x,y)关于 x x x和关于 y y y是右连续的
- P { a < X ≤ b , c < Y ≤ d } = F ( b , d ) + F ( a , c ) − F ( b , c ) − F ( a , d ) P \left\{a<X \leq b,c<Y \leq d\right\}=F(b,d)+F(a,c)-F(b,c)-F(a,d) P{ a<X≤b,c<Y≤d}=F(b,d)+F(a,c)−F(b,c)−F(a,d)
二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数为 F ( x , y ) F(x,y) F(x,y),分别称 F X ( x ) = P { X ≤ x } F_{X}(x)=P \left\{X \leq x\right\} FX(x)=P{
X≤x}和 F Y ( y ) = P { Y ≤ y } F_{Y}(y)=P \left\{Y \leq y\right\} FY(y)=P{
Y≤y}为 ( X , Y ) (X,Y) (X,Y)关于 X X X和关于 Y Y Y的边缘分布
显然,边缘分布 F X ( x ) F_{X}(x) FX(x)和 F Y ( y ) F_{Y}(y) FY(y)与二维随机变量 F ( x , y ) F(x,y) F(x,y)有如下关系:
- F X ( x ) = P { X ≤ x } = P { X ≤ x , y < + ∞ } = F ( x , + ∞ ) F_{X}(x)=P \left\{X \leq x\right\}=P \left\{X \leq x,y<+\infty\right\}=F(x,+\infty) FX(x)=P{ X≤x}=P{ X≤x,y<+∞}=F(x,+∞)
- F Y ( y ) = P { Y ≤ y } = P { X < + ∞ , Y ≤ y } = F ( + ∞ , y ) F_{Y}(y)=P \left\{Y \leq y\right\}=P \left\{X < +\infty,Y \leq y\right\}=F(+\infty,y) FY(y)=P{ Y≤y}=P{ X<+∞,Y≤y}=F(+∞,y)
这里 F ( x , + ∞ ) F(x,+\infty) F(x,+∞)应理解为 lim y → + ∞ F ( x , y ) \lim\limits_{y \to +\infty}F(x,y) y→+∞limF(x,y)
定义:如果对于任意给定的 ξ > 0 , P { y − ξ < Y ≤ y + ξ } > 0 \xi >0,P \left\{y-\xi <Y \leq y+\xi \right\}>0 ξ>0,P{
y−ξ<Y≤y+ξ}>0
lim ξ → 0 + P { X ≤ x ∣ y − ξ < Y ≤ y + ξ } = lim ξ → 0 + P { X ≤ x , y − ξ < Y ≤ y + ξ } P { y − ξ < Y ≤ y + ξ } \lim\limits_{\xi \to 0^{+}}P \left\{X \leq x|y-\xi <Y \leq y+\xi \right\}=\lim\limits_{\xi \to 0^{+}}\frac{P \left\{X \leq x,y-\xi <Y \leq y+\xi \right\}}{P \left\{y-\xi <Y \leq y+\xi \right\}} ξ→0+limP{
X≤x∣y−ξ<Y≤y+ξ}=ξ→0+limP{
y−ξ<Y≤y+ξ}P{
X≤x,y−ξ<Y≤y+ξ}
存在,则称此极限为在条件 Y = y Y=y Y=y下 X X X的条件分布,记作 F X ∣ Y ( x ∣ y ) F_{X|Y}(x|y) FX∣Y(x∣y)或 P { X ≤ x ∣ Y = y } P \left\{X \leq x|Y=y\right\} P{
X≤x∣Y=y}
类似地可以定义 F Y ∣ X ( y ∣ x ) F_{Y|X}(y|x) FY∣X(y∣x)
二、二维离散型随机变量
定义:如果随机变量 ( X , Y ) (X,Y) (X,Y)可能取值为有限个或可数无穷个 ( x i , y i ) , ( i , j = 1 , 2 , ⋯ ) (x_{i},y_{i}),(i,j=1,2,\cdots ) (xi,yi),(i,j=1,2,⋯)则称 ( X , Y ) (X,Y) (X,Y)为二维离散型随机变量
定义:二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)的可能取值为 ( x i , y i ) , ( i , j = 1 , 2 , ⋯ ) (x_{i},y_{i}),(i,j=1,2,\cdots ) (xi,yi),(i,j=1,2,⋯)称
P { X = x i , Y = y i } = p i j , i , i = 1 , 2 , ⋯ P \left\{X=x_{i},Y=y_{i}\right\}=p_{ij},i,i=1,2,\cdots P{
X=xi,Y=yi}=pij,i,i=1,2,⋯
为二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)的概率分布或分布律
也可以用表格表示分布律
分布律 p i j p_{ij} pij的性质
- p i j ≥ 0 , i , j = 1 , 2 , ⋯ p_{ij}\geq 0,i,j=1,2,\cdots pij≥0,i,j=1,2,⋯
- ∑ i ∑ j p i j = 1 \sum\limits_{i}^{}\sum\limits_{j}^{}p_{ij}=1 i∑j∑pij=1
定义: p i ⋅ = P { X = x i } , i = 1 , 2 , ⋯ p_{i \cdot }=P \left\{X=x_{i}\right\},i=1,2,\cdots pi⋅=P{ X=xi},i=1,2,⋯和 p ⋅ y = P { Y = y j } , j = 1 , 2 , ⋯ p_{\cdot y}=P \left\{Y=y_{j}\right\},j=1,2,\cdots p⋅y=P{ Y=yj},j=1,2,⋯分别被称为 ( X , Y ) (X,Y) (X,Y)关于 X X X和关于