【概率论基础进阶】多维随机变量及其分布-二维随机变量及其分布

本文深入探讨了二维随机变量的概念,包括分布函数的性质、二维离散型随机变量的分布律和二维连续型随机变量的概率密度。通过实例详细解释了边缘分布、条件分布以及如何计算相关概率,帮助深化对概率论的理解。
摘要由CSDN通过智能技术生成

一、二维随机变量

定义:设 X = X ( ω ) , Y = Y ( ω ) X=X( \omega),Y=Y(\omega) X=X(ω),Y=Y(ω)是定义在样本空间 Ω \Omega Ω上的两个随机变量,则称向量 ( X , Y ) (X,Y) (X,Y)为二维随机变量,或随机变量

定义:设二维随机变量 ( X , Y ) (X,Y) (X,Y),对任意实数 x , y x,y x,y,二元函数
F ( x , y ) = P { X ≤ x , Y ≤ y } , − ∞ < x , y < + ∞ F(x,y)=P \left\{X \leq x,Y \leq y\right\},-\infty<x,y<+\infty F(x,y)=P{ Xx,Yy},<x,y<+
称为二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数,或称随机变量 X X X Y Y Y的联合分布函数

分布函数 F ( x , y ) F(x,y) F(x,y)的性质

  • 对任意 x , y x,y x,y,均有 0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y)\leq 1 0F(x,y)1
  • F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,y)=F(x,-\infty)=F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(,y)=F(x,)=F(,)=0,F(+,+)=1
  • F ( x , y ) F(x,y) F(x,y)关于 x x x和关于 y y y均单调不减
  • F ( x , y ) F(x,y) F(x,y)关于 x x x和关于 y y y是右连续的
  • P { a < X ≤ b , c < Y ≤ d } = F ( b , d ) + F ( a , c ) − F ( b , c ) − F ( a , d ) P \left\{a<X \leq b,c<Y \leq d\right\}=F(b,d)+F(a,c)-F(b,c)-F(a,d) P{ a<Xb,c<Yd}=F(b,d)+F(a,c)F(b,c)F(a,d)

二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数为 F ( x , y ) F(x,y) F(x,y),分别称 F X ( x ) = P { X ≤ x } F_{X}(x)=P \left\{X \leq x\right\} FX(x)=P{ Xx} F Y ( y ) = P { Y ≤ y } F_{Y}(y)=P \left\{Y \leq y\right\} FY(y)=P{ Yy} ( X , Y ) (X,Y) (X,Y)关于 X X X和关于 Y Y Y的边缘分布
显然,边缘分布 F X ( x ) F_{X}(x) FX(x) F Y ( y ) F_{Y}(y) FY(y)与二维随机变量 F ( x , y ) F(x,y) F(x,y)有如下关系:

  • F X ( x ) = P { X ≤ x } = P { X ≤ x , y < + ∞ } = F ( x , + ∞ ) F_{X}(x)=P \left\{X \leq x\right\}=P \left\{X \leq x,y<+\infty\right\}=F(x,+\infty) FX(x)=P{ Xx}=P{ Xx,y<+}=F(x,+)
  • F Y ( y ) = P { Y ≤ y } = P { X < + ∞ , Y ≤ y } = F ( + ∞ , y ) F_{Y}(y)=P \left\{Y \leq y\right\}=P \left\{X < +\infty,Y \leq y\right\}=F(+\infty,y) FY(y)=P{ Yy}=P{ X<+,Yy}=F(+,y)

这里 F ( x , + ∞ ) F(x,+\infty) F(x,+)应理解为 lim ⁡ y → + ∞ F ( x , y ) \lim\limits_{y \to +\infty}F(x,y) y+limF(x,y)

定义:如果对于任意给定的 ξ > 0 , P { y − ξ < Y ≤ y + ξ } > 0 \xi >0,P \left\{y-\xi <Y \leq y+\xi \right\}>0 ξ>0,P{ yξ<Yy+ξ}>0
lim ⁡ ξ → 0 + P { X ≤ x ∣ y − ξ < Y ≤ y + ξ } = lim ⁡ ξ → 0 + P { X ≤ x , y − ξ < Y ≤ y + ξ } P { y − ξ < Y ≤ y + ξ } \lim\limits_{\xi \to 0^{+}}P \left\{X \leq x|y-\xi <Y \leq y+\xi \right\}=\lim\limits_{\xi \to 0^{+}}\frac{P \left\{X \leq x,y-\xi <Y \leq y+\xi \right\}}{P \left\{y-\xi <Y \leq y+\xi \right\}} ξ0+limP{ Xxyξ<Yy+ξ}=ξ0+limP{ yξ<Yy+ξ}P{ Xx,yξ<Yy+ξ}
存在,则称此极限为在条件 Y = y Y=y Y=y X X X的条件分布,记作 F X ∣ Y ( x ∣ y ) F_{X|Y}(x|y) FXY(xy) P { X ≤ x ∣ Y = y } P \left\{X \leq x|Y=y\right\} P{ XxY=y}
类似地可以定义 F Y ∣ X ( y ∣ x ) F_{Y|X}(y|x) FYX(yx)

二、二维离散型随机变量

定义:如果随机变量 ( X , Y ) (X,Y) (X,Y)可能取值为有限个或可数无穷个 ( x i , y i ) , ( i , j = 1 , 2 , ⋯   ) (x_{i},y_{i}),(i,j=1,2,\cdots ) (xi,yi),(i,j=1,2,)则称 ( X , Y ) (X,Y) (X,Y)为二维离散型随机变量

定义:二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)的可能取值为 ( x i , y i ) , ( i , j = 1 , 2 , ⋯   ) (x_{i},y_{i}),(i,j=1,2,\cdots ) (xi,yi),(i,j=1,2,)
P { X = x i , Y = y i } = p i j , i , i = 1 , 2 , ⋯ P \left\{X=x_{i},Y=y_{i}\right\}=p_{ij},i,i=1,2,\cdots P{ X=xi,Y=yi}=pij,i,i=1,2,
为二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)的概率分布或分布律
也可以用表格表示分布律

分布律 p i j p_{ij} pij的性质

  • p i j ≥ 0 , i , j = 1 , 2 , ⋯ p_{ij}\geq 0,i,j=1,2,\cdots pij0,i,j=1,2,
  • ∑ i ∑ j p i j = 1 \sum\limits_{i}^{}\sum\limits_{j}^{}p_{ij}=1 ijpij=1

定义: p i ⋅ = P { X = x i } , i = 1 , 2 , ⋯ p_{i \cdot }=P \left\{X=x_{i}\right\},i=1,2,\cdots pi=P{ X=xi},i=1,2, p ⋅ y = P { Y = y j } , j = 1 , 2 , ⋯ p_{\cdot y}=P \left\{Y=y_{j}\right\},j=1,2,\cdots py=P{ Y=yj},j=1,2,分别被称为 ( X , Y ) (X,Y) (X,Y)关于 X X X和关于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值