行列式是一种特殊的运算形式,跟一维的加减乘除这类运算类似。只不过它所针对的是对高维度数据的求解,它是从方程组的概念发展而来,是一种比较常见的数学工具。
行列式和 「线性代数」 里的其他概念,比如 「矩阵」、「向量」 比较容易混淆。但是实际上在概念上它们的差异很大,你可以说「矩阵是高维度的向量,而向量是一维度的矩阵」,但行列式是行列式,它既不是向量也不是矩阵,它就是一种特殊的 运算规则 。
文章目录
行列式,也称方阵,是一个元素以 n × n n \times n n×n 存在的特殊运算形式,记为 det ( A ) \det (A) det(A) 或 ∣ A ∣ |A| ∣A∣
1. 二阶行列式
det ( A ) = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \det(A) = \left | \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right | = a_{11} a_{22} - a_{12} a_{21} det(A)=∣∣∣∣a11a21a12a22∣∣∣∣=a11a22−a12a21
2. 三阶行列式
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right | det(A)=∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
对于二阶、三阶行列式,它的运算过程可以非常粗暴地图像化的表示如下
即
det ( A ) = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \det (A) = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31} det(A)=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31
3. 高阶行列式
注意,二阶以及三阶行列式的运算规则不适用于高阶行列式,对于正负号的判断要考虑下标的「逆序数」
det ( A ) = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ p 1 p 2 ⋯ p n ( − 1 ) τ ( p 1 p 2 ⋯ p n ) a 1 p 1 a 2 ⋯ a n p n \det(A) = \left | \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right | = \sum_{p_1 p_2 \cdots p_n} (-1)^{\tau (p_1 p_2 \cdots p_n)} a_{1p_1} a_{2} \cdots a_{n p_n} det(A)=∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣=p1p2⋯pn∑(−1)τ(p1p2⋯pn)a1p1a2⋯anpn
这是一个 n n n 阶行列式,其中 τ ( p 1 p 2 ⋯ p n ) \tau (p_1 p_2 \cdots p_n) τ(p1p2⋯pn) 表示由行列式元素第二下标构成的逆序数。
知识补充:
逆序数
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的实际先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序总数叫做这个排列的逆序数1。
例如对于下面的行列式 det ( A ) \det (A) det(A)
由元素 a 12 a 21 a 34 a 43 a_{12} a_{21} a_{34} a_{43} a12a21a34a43 的第二下标组成序列 ( 2143 ) (2143) (2143),我们根据公式,可以知道要确定正负号就要先确定逆序数是多少。对于 ( 2143 ) (2143) (2143) 来说它的逆序对有 ( 2 , 1 ) , ( 4 , 3 ) (2, 1), (4, 3) (2,1),(4,3),逆序数 τ ( 2143 ) = 2 \tau (2143) = 2 τ(2143)=2,所以
( − 1 ) τ ( 2143 ) a 12 a 21 a 34 a 43 = a 12 a 21 a 34 a 43 (-1)^{\tau (2143)} a_{12} a_{21} a_{34} a_{43} = a_{12} a_{21} a_{34} a_{43} (−1)τ(2143)a12a21a34a43=a12a21a34a43
我们可以再选一组,比如它后面的 a 13 a 22 a 31 a 44 a_{13} a_{22} a_{31} a_{44} a13a22a31a44,对于 ( 3214 ) (3214) (3214) 来说,它的逆序对为 ( 3 , 2 ) , ( 3 , 1 ) , ( 2 , 1 ) (3, 2), (3, 1), (2, 1) (3,2),(3,1),(2,1),所以 τ ( 3214 ) = 3 \tau(3214) = 3 τ(3214)=3,最终
( − 1 ) τ ( 3214 ) a 13 a 22 a 31 a 44 = − a 13 a 22 a 31 a 44 (-1)^{\tau (3214)} a_{13} a_{22} a_{31} a_{44} = - a_{13} a_{22} a_{31} a_{44} (−1)τ(3214)a13a22a31a44=−a13a22a31a44
4. 行列式的性质
4.1. 行列式转置后,值不变
det ( A ) = det ( A T ) = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ∣ \det(A) = \det(A^{T}) = \left | \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right | = \left | \begin{matrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{matrix} \right | det(A)=det(AT)=∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣a11a12⋮a1na21a22⋮a2n⋯⋯⋱⋯an1an2⋮ann∣∣∣∣∣∣∣∣∣
我们可以用三阶段行列式验证
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right | ∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
它的转置行列式 det ( A T ) \det (A^T) det(AT) 为
∣ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∣ \left | \begin{matrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{matrix} \right | ∣∣∣∣∣∣a11a12a13a21a22a23a31a32a33∣∣∣∣∣∣
det ( A T ) = a 11 a 22 a 33 + a 21 a 32 a 13 + a 31 a 12 a 23 − a 31 a 22 a 13 − a 11 a 32 a 23 − a 21 a 12 a 33 \det(A^T) = a_{11} a_{22} a_{33} + a_{21} a_{32} a_{13} + a_{31} a_{12} a_{23} - a_{31} a_{22} a_{13} - a_{11} a_{32} a_{23} - a_{21} a_{12} a_{33} det(AT)=a11a22a33+a21a32a13+a31a12a23−a31a22a13−a11a32a23−a21a12a33
可以发现结果和 det ( A ) \det(A) det(A) 是一样的
4.2. 有两行(列)元素成比例,行列式的值为0
我们以三阶行列式为例
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right | det(A)=∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
令第三行为第二行的倍数,于是
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 k a 21 k a 22 k a 23 ∣ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ ka_{21} & ka_{22} & ka_{23} \end{matrix} \right | det(A)=∣∣∣∣∣∣a11a21ka21a12a22ka22a13a23ka23∣∣∣∣∣∣
展开后,得到
det ( A ) = a 11 a 22 [ k ⋅ a 23 ] + a 12 a 23 [ k ⋅ a 21 ] + a 13 a 21 [ k ⋅ a 22 ] − a 11 a 23 [ k ⋅ a 22 ] − a 12 a 21 [ k ⋅ a 23 ] − a 13 a 22 [ k ⋅ a 21 ] = k ( a 11 a 22 a 23 + a 12 a 23 a 21 + a 13 a 21 a 22 − a 11 a 23 a 22 − a 12 a 21 a 23 − a 13 a 22 a 21 ) \det (A) = a_{11} a_{22} [k \cdot a_{23}] + a_{12} a_{23} [k \cdot a_{21}] + a_{13} a_{21} [k \cdot a_{22}] - \\ a_{11} a_{23} [ k\cdot a_{22}] - a_{12} a_{21} [k \cdot a_{23}] - a_{13} a_{22} [k \cdot a_{21}] \\ = k (a_{11} a_{22} a_{23} + a_{12} a_{23} a_{21} + a_{13} a_{21} a_{22} - a_{11} a_{23} a_{22} - a_{12} a_{21} a_{23} - a_{13} a_{22} a_{21} ) det(A)=a11a22[k⋅a23]+a12a23[k⋅a21]+a13a21[k⋅a22]−a11a23[k⋅a22]−a12a21[k⋅a23]−a13a22[k⋅a21]=k(a11a22a23+a12a23a21+a13a21a22−a11a23a22−a12a21a23−a13a22a21)
然后,我们可以发现
= k ( a 11 a 22 a 23 − a 11 a 23 a 22 + a 12 a 23 a 21 − a 12 a 21 a 23 + a 13 a 21 a 22 − a 13 a 22 a 21 ) = 0 = k (a_{11} a_{22} a_{23} - a_{11} a_{23} a_{22} + a_{12} a_{23} a_{21} - a_{12} a_{21} a_{23} + a_{13} a_{21} a_{22} - a_{13} a_{22} a_{21} ) = 0 =k(a11a22a23−a11a23a22+a12a23a21−a12a21a23+a13a21a22−a13a22a21)=0
同理,列也是一样的。
4.3. 行列式中某一行(列)元素全为0时,行列式值为0
我们以三阶行列式为例
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 0 0 0 ∣ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 0 \end{matrix} \right | det(A)=∣∣∣∣∣∣a11a210a12a220a13a230∣∣∣∣∣∣
基本上不用计算,可以直接凭直觉得出它的值为0。
4.4. 如果某行(列)的元素都是两个数的和,可以把行列式拆分为两个单独的行列式
det ( A ) = ∣ a 11 ⋯ a 1 n ⋮ ⋮ b i 1 + c i 1 ⋯ b i n + c i n ⋮ ⋮ a n 1 ⋯ a n n ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ b i 1 ⋯ b i n ⋮ ⋮ a n 1 ⋯ a n n ∣ + ∣ a 11 ⋯ a 1 n ⋮ ⋮ c i 1 ⋯ + c i n ⋮ ⋮ a n 1 ⋯ a n n ∣ \det(A) = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{i1} + c_{i1} & \cdots & b_{in} + c_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{i1} & \cdots & b_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | + \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ c_{i1} & \cdots & + c_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | det(A)=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮bi1+ci1⋮an1⋯⋯⋯a1n⋮bin+cin⋮ann∣∣∣∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮bi1⋮an1⋯⋯⋯a1n⋮bin⋮ann∣∣∣∣∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ci1⋮an1⋯⋯⋯a1n⋮+cin⋮ann∣∣∣∣∣∣∣∣∣∣∣∣
4.5. 行列式的两行(列)互换,行列式变号
这里,我们为了方便,直接用二阶行列式做说明
det ( A ) = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \det(A) = \left | \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right | = a_{11} a_{22} - a_{12} a_{21} det(A)=∣∣∣∣a11a21a12a22∣∣∣∣=a11a22−a12a21
交换行或列后,得到
det ( A ′ ) = ∣ a 12 a 11 a 22 a 21 ∣ = a 12 a 21 − a 11 a 22 \det(A') = \left | \begin{matrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{matrix} \right | = a_{12} a_{21} - a_{11} a_{22} det(A′)=∣∣∣∣a12a22a11a21∣∣∣∣=a12a21−a11a22
所以为了让 det ( A ′ ) \det (A') det(A′) 和 det ( A ) \det(A) det(A) 的值一致,我们要令 det ( A ) = − det ( A ′ ) \det (A) = -\det (A') det(A)=−det(A′)
4.6. 如果某行(列)的元素有公因子,可将公因子提到行列式外
det ( A ) = ∣ a 11 ⋯ a 1 n ⋮ ⋮ k a i 1 ⋯ k a i n ⋮ ⋮ a n 1 ⋯ a n n ∣ = k ⋅ ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a n 1 ⋯ a n n ∣ \det(A) = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ k a_{i1}& \cdots & k a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | = k \cdot \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | det(A)=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮kai1⋮an1⋯⋯⋯a1n⋮kain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣=k⋅∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮an1⋯⋯⋯a1n⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣
4.7. 行列式中某一行(列)元素的k 倍加到另一行(列),其值不变
det ( A ) = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a n 1 ⋯ a n n ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 + k a j 1 ⋯ a i n + k a j n ⋮ ⋮ a n 1 ⋯ a n n ∣ \det(A) = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} + ka_{j1} & \cdots & a_{in} + ka_{jn}\\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | det(A)=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮an1⋯⋯⋯a1n⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1+kaj1⋮an1⋯⋯⋯a1n⋮ain+kajn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣
这其实很容易求证,根据第4条性质,上面的行列式可以表示为
det ( A ) = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 + k a j 1 ⋯ a i n + k a j n ⋮ ⋮ a n 1 ⋯ a n n ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a n 1 ⋯ a n n ∣ + ∣ a 11 ⋯ a 1 n ⋮ ⋮ k a j 1 ⋯ + k a j n ⋮ ⋮ a n 1 ⋯ a n n ∣ \det(A) = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} + ka_{j1} & \cdots & a_{in} + ka_{jn}\\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | + \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ ka_{j1} & \cdots & + ka_{jn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | det(A)=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1+kaj1⋮an1⋯⋯⋯a1n⋮ain+kajn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮an1⋯⋯⋯a1n⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣∣∣∣∣a11⋮kaj1⋮an1⋯⋯⋯a1n⋮+kajn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣
然后后面的行列式的 k a j n ka_{jn} kajn 行又因为是 a j n a_{jn} ajn 的倍数,于是
det ( A ) = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 + k a j 1 ⋯ a i n + k a j n ⋮ ⋮ a n 1 ⋯ a n n ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a n 1 ⋯ a n n ∣ \det(A) = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} + ka_{j1} & \cdots & a_{in} + ka_{jn}\\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | = \left | \begin{matrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{matrix} \right | det(A)=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1+kaj1⋮an1⋯⋯⋯a1n⋮ain+kajn⋮ann∣∣∣∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ai1⋮an1⋯⋯⋯a1n⋮ain⋮ann∣∣∣∣∣∣∣∣∣∣∣∣
5. 行列式的展开定理
5.1. 行列式的代数余子式
在 n n n 阶行列式中,将元素 a i j a_{ij} aij 所在的 「 i i i 行」 与 「 j j j 列」 的元素划去,其余元素按照原来的相对位置构成 n − 1 n-1 n−1 阶行列式 M i j M_{ij} Mij
A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i + j} M_{ij} Aij=(−1)i+jMij
怎么理解呢,比方说对于三阶行列式
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right | det(A)=∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
其元素 a 11 a_{11} a11 的代数余子式表示为
A 11 = ( − 1 ) 1 + 1 ∣ a 22 a 23 a 32 a 33 ∣ = ∣ a 22 a 23 a 32 a 33 ∣ A_{11} = (-1)^{1+1} \left | \begin{matrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{matrix} \right | = \left | \begin{matrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{matrix} \right | A11=(−1)1+1∣∣∣∣a22a32a23a33∣∣∣∣=∣∣∣∣a22a32a23a33∣∣∣∣
其元素 a 23 a_{23} a23 的代数余子式为
A 23 = ( − 1 ) 2 + 3 ∣ a 11 a 12 a 31 a 32 ∣ = − ∣ a 11 a 12 a 31 a 32 ∣ A_{23} = (-1)^{2+3} \left | \begin{matrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{matrix} \right | = - \left | \begin{matrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{matrix} \right | A23=(−1)2+3∣∣∣∣a11a31a12a32∣∣∣∣=−∣∣∣∣a11a31a12a32∣∣∣∣
这有什么用呢?显然它可以简化运算,比方说我们展开三阶行式
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right | det(A)=∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣
它可以表示为某行或列的元素的代数余子式的和,即
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 A 11 + a 12 A 12 + a 13 A 13 = a 12 A 12 + a 22 A 22 + a 32 A 32 = ⋯ \det(A) = \left | \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right | \\ = a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} \\ = a_{12} A_{12} + a_{22} A_{22} + a_{32} A_{32} = \cdots det(A)=∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣=a11A11+a12A12+a13A13=a12A12+a22A22+a32A32=⋯
我们随便以 a 11 A 11 + a 12 A 12 + a 13 A 13 a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} a11A11+a12A12+a13A13 为例
= a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 = a_{11} \left | \begin{matrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{matrix} \right | - a_{12} \left | \begin{matrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{matrix} \right | + a_{13} \left | \begin{matrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{matrix} \right | \\ = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31} =a11∣∣∣∣a22a32a23a33∣∣∣∣−a12∣∣∣∣a21a31a23a33∣∣∣∣+a13∣∣∣∣a21a31a22a32∣∣∣∣=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31
6. 特殊的行列式
6.1. 「上三角」或「下三角」行列式
如果行列式「上三角」或「下三角」的元素全为0,那么行列式等于对角线上元素的乘积
det ( A ) = ∣ a 11 0 ⋯ 0 0 a 21 a 22 ⋯ 0 0 ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m m 0 a n 1 a n 2 ⋯ a m n a n n ∣ = a 11 a 22 a 33 ⋯ a m m a n n \det(A) = \left | \begin{matrix} a_{11} & 0 & \cdots & 0 & 0 \\ a_{21} & a_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} & 0 \\ a_{n1} & a_{n2} & \cdots & a_{mn} & a_{nn} \end{matrix} \right | = a_{11} a_{22} a_{33} \cdots a_{mm} a_{nn} det(A)=∣∣∣∣∣∣∣∣∣∣∣a11a21⋮am1an10a22⋮am2an2⋯⋯⋱⋯⋯00⋮ammamn00⋮0ann∣∣∣∣∣∣∣∣∣∣∣=a11a22a33⋯ammann
6.2. n 阶范德蒙德行列式
det ( A ) = ∣ 1 1 ⋯ 1 1 x 1 x 2 ⋯ x m x n x 1 2 x 2 2 ⋯ x m 2 x n 2 ⋮ ⋮ ⋱ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x m n − 1 x n n − 1 ∣ = Π 1 ≤ i ≤ j ≤ n ( x i − x j ) \det(A) = \left | \begin{matrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_m & x_n \\ x_1^2 & x_2^2 & \cdots & x_m^2 & x_n^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_m^{n-1} & x_n^{n-1} \\ \end{matrix} \right | = \Pi_{1 \leq i \leq j \leq n} (x_i - x_j) det(A)=∣∣∣∣∣∣∣∣∣∣∣1x1x12⋮x1n−11x2x22⋮x2n−1⋯⋯⋯⋱⋯1xmxm2⋮xmn−11xnxn2⋮xnn−1∣∣∣∣∣∣∣∣∣∣∣=Π1≤i≤j≤n(xi−xj)
https://baike.baidu.com/item/%E9%80%86%E5%BA%8F%E6%95%B0/3334502 ↩︎