stata回归?固定效应模型(组内变换OR LSDV最小二乘法)

文章介绍了面板数据的概念,包括其定义、分类和优缺点。重点讨论了面板数据模型,如固定效应模型和随机效应模型,以及它们在Stata中的实现。此外,提到了处理面板数据时的估计方法,如LSDV和广义最小二乘法,并指出在短面板数据估计中需关注的异方差、自相关和截面相关问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面板数据分析与Stata应用笔记整理自慕课上浙江大学方红生教授的面板数据分析与Stata应用课程,笔记中部分图片来自课程截图。

笔记内容还参考了陈强教授的《高级计量经济学及Stata应用(第二版)》


一、面板数据的定义

面板数据(panel data或longitudinaldata),指的是在一段时间内跟踪同一组个体(individual)的数据。它既有横截面的维度(n个个体),又有时间维度(T个时期)。是同时在时间和截面上取得的二维数据,又称时间序列与截面混合数据(polled timeseries and cross section data)。

一个T=3的面板数据结构如下所示

二、面板数据的分类

面板数据类型通常分为三类,分别为:

a.短面板数据与长面板数据

b.动态面板数据和静态面板数据

c.平衡面板和非平衡面板

(1)短面板数据与长面板数据

当截面数n大于T时,即为短面板数据;

当截面数n小于T时,即为长面板数据.

(2)动态面板数据和静态面板数据

如果解释变量包含别解释变量的滞后值,则为动态面板数据,反之则为静态面板.

(3)平衡面板和非平衡面板

当每个个体在相同的时间内都有观

### 偏最小二乘判别分析 (PLS-DA) 和偏最小二乘回归 (PLS 回归) #### 定义与目的 偏最小二乘回归(Partial Least Squares Regression, PLS 回归)是一种多变量统计技术,旨在通过最大化因变量和自变量之间的协方差来建立线性模型。这种方法特别适用于当存在大量高度相关的预测变量时的情况[^1]。 偏最小二乘判别分析(Partial Least Squares Discriminant Analysis, PLS-DA),则是基于 PLS 的一种分类方法。其目标是在高维数据集中找到能够区分不同类别样本的最佳方向。具体来说,PLS-DA 将类别标签转换成虚拟响应变量,并应用 PLS 方法构建模型以实现类别的分离[^2]。 #### 主要区别 - **应用场景**: - PLS 回归主要用于连续型因变量的建模;而 PLS-DA 则用于处理离散型或分类型的目标变量。 - **输出解释**: - 对于 PLS 回归而言,最终得到的是一个可以用来预测新观测值得分的数学表达式; 而对于 PLS-DA 来说,则更关注如何利用提取出来的潜在因子来进行样品间的差异识别以及间比较。 - **算法流程上的细微差别**: - 在实际操作过程中,两者都涉及到寻找最佳投影向量的过程, 不过由于 PLS-DA 是为了更好地分开不同的群体而不是单纯地做数值估计, 所以其内部优化机制会更加倾向于提高分类准确性而非降低残差平方和。 #### 共同特点 尽管二者有所区别,在很多方面它们仍然保持了一致: - 使用相同的降维思路——即通过对原始特征空间进行变换从而获得一新的正交基底作为输入给后续的学习器使用。 - 可以有效应对多重共线性和维度灾难等问题带来的挑战。 - 同样依赖交叉验证等手段评估模型性能并选择最优参数设置。 ```r library(pls) # 构建 PLS 模型 pls_model <- plsr(y ~ ., data = train_data, validation = "CV") # 构建 PLS-DA 模型 plsdamodel <- mda(x = X_train, grouping = y_train, method = "pls", ncomp = 3) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值