欧拉回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12782 Accepted Submission(s): 4759
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output
1 0
介个题就是并查集在欧拉图里的应用,很简单啦,用并查集就行啦。
代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#define M 10000+10
using namespace std;
int fa[M],ans[M];
void init(int n)
{
for(int i=0;i<n;i++)
fa[i]=i;
}
int findroot(int x)
{
if(x!=fa[x])
fa[x]=findroot(fa[x]);
return fa[x];
}
void Union(int x,int y)
{
int nx=findroot(x);
int ny=findroot(y);
ans[x]++;ans[y]++;
if(nx!=ny)
fa[ny]=nx;
}
int main()
{
int m,n;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
memset(ans,0,sizeof(ans));
init(n);
int a,b,p=0,num=0;
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
Union(a,b);
}
for(int i=1;i<=n;i++)
{
if(fa[i]==i) num++;
if(ans[i]%2){
p=1;
break;
}
}
if(num>1){
printf("0\n");
continue;
}
if(p) printf("0\n");
else printf("1\n");
}
return 0;
}