- 博客(40)
- 收藏
- 关注
转载 傅里叶变换小波变换
傅里叶变换,只能获取成分,不能获取成分出现的时间,小波变换可以获得两部分的信息,可以设置阈值,将系数小于阈值置为零达到去除高频噪声的目的,小波基底相对于傅里叶基底正余弦基底,形式上更灵活,有限长,两侧衰减
2022-09-22 16:17:11 120
转载 推荐系统4 GBDT+LR
lr属于机器学习的算法,预测概率,缺点是不能特征交叉,融合gbdt,树模型在构建的过程可以进行自动的特征组合,每个叶子节点,唯一对应一个离散化的特征,重新送入lr模型,后续推荐系统朝着更加复杂的特征交叉的方向发展,包括fm以及神经网路
2022-09-22 15:26:14 159
转载 推荐系统5 NeuralCF模型
介绍了两个模型,neural cf是mf结果的内积部分改成网络层,neural mf是内积的结果与全连接层的结果进行拼接,再过一个全连接层得到最后的输出
2022-09-22 15:25:38 183
转载 推荐系统7 NFM & AFM
nfm主要解决fm线性模型的问题,创新加入了特征交叉池化层,把原来的点积运算改变成了,元素积,得到的是向量结果,在连接dnn网络,afm解决nfm不加区分的对待交叉特征,融合了注意力机制,不同的交互向量在压缩成单个是对预测结果的影响是不同的
2022-09-22 15:00:14 175
转载 推荐系统6--Wide&Deep与Deep&Cross模型(综合原始特征及交叉特征)
widedeep 和deepcross主要是传统机器学习模型与深度学习模型融合,获得两者的优点,实现特征高阶的交互,增加对交叉特征信息的挖掘
2022-09-15 15:40:17 315
转载 推荐系统3--FM和FFM
这部分是推荐机器学习方法化, 预测概率,解决特征交叉这一问题的模型发展,poly2,引入了交叉项,但参数量过大,且数据稀疏性,对参数求解有很大影响,fm参考矩阵分解,将交叉项的权重矩阵进行分解,得到特征的隐变量,降低了参数量,缓解了数据稀疏对于参数求解带来的影响,ffm引入了域,增强了隐向量的表达能力,降低了一侧隐向量的维度
2022-09-15 14:45:24 207
转载 推荐系统2--隐语义模型(LFM)和矩阵分解(MF)
主要是因为协同过滤存在一些问题,矩阵稀疏,难以评估相似性,出现的一些矩阵分解的方法以及变体,funksvd基于神经网络误差反向传导求解参数的方法,获得用户物品的隐变量,rsvd对评分添加偏置用来消除评分系统本身的偏差,svd++是进一步考虑了用户的其他历史评分,利用了过去的信息
2022-09-15 11:35:42 366
转载 推荐系统1-协同过滤
这一部分属于传统的算法了,了解下ucf,icf是怎么做的,适用场景,存在的问题及对应的解决方法,矩阵稀疏通过矩阵分解,利用的信息少后产生了以lr为核心的机器学习的解决方法
2022-09-15 10:40:27 204
转载 transformer基本结构
bert是基于transformer的双向编码器,gpt是基于transformer的解码器,transformer作为基本组件被考察的频率很高
2022-09-07 17:32:32 144
转载 word2vec and fasttext
对于word2vec,要懂word2vec两个方式的区别,效果对比,具体怎么获得embbeding,层级二分类,负采样fasttext与word2vec结构类似,但获取输入的粒度不同,基于ngram,而且训练目的不同
2022-09-07 17:21:18 516
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人