推荐系统4 GBDT+LR

本文探讨了GBDT+LR模型在推荐系统中的应用。首先介绍了逻辑回归模型如何将推荐问题转化为点击率预测问题,接着详细阐述了Facebook提出的GBDT+LR模型,该模型利用GBDT进行特征筛选和组合,生成离散特征向量供LR使用,从而实现高效的特征交叉。
摘要由CSDN通过智能技术生成

融合多种特征的推荐模型 逻辑回归模型与GBDT+LR_只想做个咸鱼的博客-CSDN博客

协同过滤能利用的是用户与物品之间的交互信息,并未涉及用户,物品本身的信息,以及上下文特征,lr将推荐问题转换成了一个点击率预测的问题,lr的另一种表现形式感知机是神经网络中最基础的单一神经元,是深度学习的基础结构。

GBDT+LR

facebook提出了一种利用gbdt自动进行特征筛选和组合,生成新的离散特征向量,再把该特征向量作为lr模型的输入。

训练时gbdt建树的过程自动进行特征组合和离散,根节点到叶子节点这条路径可以看做不同特征的特征组合,叶子节点可以唯一表示这条路径,形成一个离散特征

对gbdt的理解

树的生成过程可以理解成自动进行多维度的特征组合的过程。

对于连续化特征,gbdt可以自动拆分一个临界阈值,避免人工离散化

对于海量的id类特征,gbdt由于树的深度和棵数限制不能有效存储

对lr的理解

形式简单,处理高维离散化特征内积运算快

资源占用小

表达能力弱,无法进行特征交叉,需要人工特征组合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值