融合多种特征的推荐模型 逻辑回归模型与GBDT+LR_只想做个咸鱼的博客-CSDN博客
协同过滤能利用的是用户与物品之间的交互信息,并未涉及用户,物品本身的信息,以及上下文特征,lr将推荐问题转换成了一个点击率预测的问题,lr的另一种表现形式感知机是神经网络中最基础的单一神经元,是深度学习的基础结构。
GBDT+LR
facebook提出了一种利用gbdt自动进行特征筛选和组合,生成新的离散特征向量,再把该特征向量作为lr模型的输入。
训练时gbdt建树的过程自动进行特征组合和离散,根节点到叶子节点这条路径可以看做不同特征的特征组合,叶子节点可以唯一表示这条路径,形成一个离散特征
对gbdt的理解
树的生成过程可以理解成自动进行多维度的特征组合的过程。
对于连续化特征,gbdt可以自动拆分一个临界阈值,避免人工离散化
对于海量的id类特征,gbdt由于树的深度和棵数限制不能有效存储
对lr的理解
形式简单,处理高维离散化特征内积运算快
资源占用小
表达能力弱,无法进行特征交叉,需要人工特征组合