统计

网易公开课 可汗学院 统计学

0.基本概念

  1. 均值 mean 样本值的和/样本个数
  2. 中位数 middle:从小到大排列后最中间的1个数,如果偶数个样本则取最中间2个数的平均值
  3. 众数 mode: 样本中出现次数最多的值
  4. 极差 range:最大值-最小值
  5. 中程数:最大值和最小值的平均数(max+min)/2
  6. 象形统计图 pictograph
  7. 条形图 bar graph 适用于将事物归类,看每一类分别是什么情况
  8. 折线图 line graph
  9. 饼图 pie chart/ pie graph 看到各部分的占比
  10. 折线图的纵坐标刻度很容易误导人。折线图的优点是可以看出趋势
  11. 茎叶图 stem-and-leaf plot 看分布情况
StemLeaf
00 0 2 4 7 7 9
11 1 3 8
20

Stem代表高位(这里是十位),Leaf代表低位(这里是个位)
也就是说大家的得分是 0 0 2 4 7 7 9 11 11 13 18 20.
12. 箱线图 box-and-whiskers 3个四分位点,最大值 最小值,第一个四分位点和我第三个四分位点之间的50%数据放在盒中 。箱线图可以看出数据的分布,以及中位数,最大最小值。

1.描述性统计学

统计学:

  • 描述统计学(descriptive)
  • 推论统计学 inferential statistics 总体,样本

集中趋势:central tendency
Average
算术平均 几何平均 调和平均 mean(容易受到异常值影响) median mode 等等都可以叫做average
样本 sample
总体 population

总体均值 样本均值

u【mu】:总体均= sigma(xi)/N N:总体个数

_
x : 样本均值 = sigma(xi)/n n:样本个数

总体方差:
sigma^2=[sigma(xi-u)^2]/N
含义:每个样本点距离均值的平均距离
样本方差S^2=[sigma(xi-样本均值)^2]/(n-1),除以n通常会低估了总体方差,除以n-1才能得到总体方差的无偏估计。
标准差 standard deviation:方差开根号
总体标准差:sigma
样本标准差:S。
样本方差的期望是总体方差,但样本标准差的期望不是总体标准差。
有了方差为什么还要标准差?
——因为要使得量纲相同。标准差和均值的量纲(单位)是一致的,在描述一个波动范围时标准差比方差更方便。比如一个班男生的平均身高是170cm,标准差是10cm,那么方差就是100cm^2。可以进行的比较简便的描述是本班男生身高分布是170±10cm,方差就无法做到这点。
方差公式变换:

sigma^2=[sigma(xi-u)^2]/N
=sigma(xi^2-2xiu+u^2)/N
=[sigma(xi^2)]/N-u^2

随机变量Random Variable

更类似一个函数映射
如:
X={ 20 , if 明天下雨
100,if 明天不下雨
骰子抛出的数字也是随机变量
随机变量分为离散随机变量和连续随机变量。
如:X=明天的雨量

概率分布函数

概率分布:probability distribution
随机变量的概率分布函数之和为1

x123456
P(X=x)1/601/61/61/62/6

连续随机变量的分布叫概率密度函数。

二项分布

P(X=k) = C(n,k) * p^k * (1-p)^(n-k)

B(n,p),n表示试验次数,p表示一次实验成功的概率。
如果np有极限lambda,则这个二项分布就趋向于参数为lambda的泊松分布,反之如果np趋于无限大(如扔1亿次均匀硬币),则根据中心极限定理,二项分布趋于正态分布。
实际中n很大时一般用正态分布计算二项分布,如果np比较小(比起n来说很小),那么用泊松分布计算更好,因为泊松分布和二项分布是离散分布,正态分布是连续分布。

期望

随机变量的期望也就是总体的均值。但是此时的总体是无穷多的,不能用每个样本值的和/N,只能用频率。
如果说概率是频率随样本趋于无穷的极限
那么期望就是平均数随样本趋于无穷的极限
二项分布的期望:E(X)=np
P(X=k)=(n,k)p^k*(1-p)^(n-k)
EX:概率加权平均=0*P(X=0)+1*P(X=1)+…+nP(X=n)=sigma(k=1,n)k*(n,k)p^k(1-p)^(n-k)=

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值