所有节点之间的最短路问题

本文介绍了如何运用动态规划在O(|v|^3)的时间复杂度下解决所有节点之间的最短路径问题,相较于Dijkstra算法,动态规划的循环结构更紧凑,实际效率更高。基本思路包括三重循环,以D[i][j]表示i到j的最短路径,并通过不断加入中间节点逐步更新最短路径。核心在于邻接矩阵存储相邻节点距离,并在循环中计算D[i][j] = min{Dij(k−1), D[i][k]+D[k][j]}。" 120874824,7430074,算法入门:数列解析与斐波那契数列实现,"['算法', '数学', 'C语言', '编程基础']
摘要由CSDN通过智能技术生成

摘要:求解所有节点的最短路完全可以用v次Dijkstra算法来解决,但是动态规划提供了一种新的思路同样以O(|v|^3)的时间界解决问题,同时因为循环更加紧凑,实际效率要快的多.

基本思路:

【1】首先要考虑动态规划是的状态空间是一个点集和起始点与终点.
【2】假设 Dijk 代表从i到j只用0到k个节点作为中间节点,D[i][j]代表i到j的最短路径.那么 Dijk = min{
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值