2017中国大学生程序设计竞赛 - 女生专场
Automatic Judge
题目链接
题意:em……..没什么好说的就是oj平台的规则,然后给你一个队伍的一段提交记录,让你计算此队伍的解题数目和总用时
解题思路:开一个二维数组几录每个题的提交状态,最后遍历一次即可
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<memory.h>
using namespace std;
int book[2000][2];//记录每个题的状态
//book[i][0]记录此题是否通过,只有通过的才计入最后的总时间
//book[i][1]记录此题所有的时间,包括罚时
int main(){
int t,hh,mm,n,m;
int x;
int num;
int sum;
string s;
cin>>t;
while(t--){
memset(book,0,sizeof(book));
num=0;
sum=0;
cin>>n>>m;
for(int i=0;i<m;i++){
cin>>x>>hh;
getchar();
cin>>mm>>s;
if(book[x][0]==0){//此题还没有AC则需要计时,AC之后再提交的不计时
if(s=="AC"){
book[x][0]=1;//AC
book[x][1]+=(hh*60+mm);
}
else{
book[x][1]+=20;//没有AC则罚时20
}
}
}
for(int i=1000;i<=1000+n;i++){//遍历计算题数和时间
if(book[i][0]==1){
num++;
sum+=book[i][1];
}
}
cout<<num<<" "<<sum<<endl;
}
return 0;
}
Coprime Sequence
题目链接
题意:给定一个数列,求去掉数列中的任意一个数之后,剩下数的最大公约数最大是多好
解题思路:由于数据量极大,所以平常的方法不行,所以可以考虑打表和递推。可以预处理数列的左右子序列中的最大公约数,然后在求左右子序列的最大公约数即为删掉某数后的最大公约数。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int a[100000];
int l[100000];
int r[100000];
int main(){
int n;
int t;
cin>>t;
while(t--){
scanf("%d",&n);
for(int i=0; i<n; i++){
scanf("%d",&a[i]);
}
l[0]=a[0];
r[n-1]=a[n-1];
for(int i=1; i<n; i++){//求左序列
l[i]=gcd(l[i-1],a[i]);
}
for(int i=n-2; i>=0; i--){//求右序列
r[i]=gcd(r[i+1],a[i]);
}
int ans=max(l[n-2],r[1]);
for(int i=1; i<n-1; i++) { //遍历求最大值
ans=max(ans,gcd(l[i-1],r[i+1]));
}
printf("%d\n",ans);
}
return 0;
}
Easy Summation
题目链接
题意:You are encountered with a traditional problem concerning the sums of powers.
Given two integers n and k. Let f(i)=i^k, please evaluate the sum f(1)+f(2)+…+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 10^9+7.
解题思路:数据量给的太小了,可以直接暴力打表。但是如果再大一点的话,估计打表就不是好方法了。数论的快速幂
#include<iostream>
#include<algorithm>
#define MOD 1000000007
using namespace std;
long long int quick_mod(long long int base,long long int b){//快速幂
long long int ans=1;
while(b){
if(b&1){
ans=ans*base%MOD;
}
b>>=1;
base=base*base%MOD;
}
return ans;
}
int main(){
long long int t,n,k;
cin>>t;
long long int sum;
while(t--){
cin>>n>>k;
sum=0;
for(int i=1;i<=n;i++){
sum+=quick_mod(i,k);
}
cout<<sum%MOD<<endl;
}
return 0;
}