2017中国大学生程序设计竞赛 - 女生专场

2017中国大学生程序设计竞赛 - 女生专场

Automatic Judge

题目链接
题意:em……..没什么好说的就是oj平台的规则,然后给你一个队伍的一段提交记录,让你计算此队伍的解题数目和总用时
解题思路:开一个二维数组几录每个题的提交状态,最后遍历一次即可

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<memory.h>
using namespace std;
int book[2000][2];//记录每个题的状态
//book[i][0]记录此题是否通过,只有通过的才计入最后的总时间
//book[i][1]记录此题所有的时间,包括罚时
int main(){
    int t,hh,mm,n,m;
    int x;
    int num;
    int sum;
    string s;
    cin>>t;
    while(t--){
        memset(book,0,sizeof(book));
        num=0;
        sum=0;
        cin>>n>>m;
        for(int i=0;i<m;i++){
            cin>>x>>hh;
            getchar();
            cin>>mm>>s;
            if(book[x][0]==0){//此题还没有AC则需要计时,AC之后再提交的不计时
                if(s=="AC"){
                    book[x][0]=1;//AC
                    book[x][1]+=(hh*60+mm);
                }
                else{
                    book[x][1]+=20;//没有AC则罚时20
                }
            }
        }
        for(int i=1000;i<=1000+n;i++){//遍历计算题数和时间
            if(book[i][0]==1){
                num++;
                sum+=book[i][1];
            }
        }
        cout<<num<<" "<<sum<<endl;
    }
    return 0;
}

Coprime Sequence

题目链接
题意:给定一个数列,求去掉数列中的任意一个数之后,剩下数的最大公约数最大是多好
解题思路:由于数据量极大,所以平常的方法不行,所以可以考虑打表和递推。可以预处理数列的左右子序列中的最大公约数,然后在求左右子序列的最大公约数即为删掉某数后的最大公约数。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}
int a[100000];
int l[100000];
int r[100000];
int main(){
    int n;
    int t;
    cin>>t;
    while(t--){
        scanf("%d",&n);
        for(int i=0; i<n; i++){
            scanf("%d",&a[i]);
        }
        l[0]=a[0];
        r[n-1]=a[n-1];
        for(int i=1; i<n; i++){//求左序列
            l[i]=gcd(l[i-1],a[i]);
        }
        for(int i=n-2; i>=0; i--){//求右序列
            r[i]=gcd(r[i+1],a[i]);
        }
        int ans=max(l[n-2],r[1]);
        for(int i=1; i<n-1; i++) {   //遍历求最大值
            ans=max(ans,gcd(l[i-1],r[i+1]));
        }
        printf("%d\n",ans);
    }
    return 0;
}

Easy Summation

题目链接
题意:You are encountered with a traditional problem concerning the sums of powers.
Given two integers n and k. Let f(i)=i^k, please evaluate the sum f(1)+f(2)+…+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 10^9+7.
解题思路:数据量给的太小了,可以直接暴力打表。但是如果再大一点的话,估计打表就不是好方法了。数论的快速幂

#include<iostream>
#include<algorithm>
#define MOD 1000000007
using namespace std;
long long int quick_mod(long long int base,long long int b){//快速幂
    long long int ans=1;
    while(b){
        if(b&1){
            ans=ans*base%MOD;
        }
        b>>=1;
        base=base*base%MOD;
    }
    return ans;
}
int main(){
    long long int t,n,k;
    cin>>t;
    long long int sum;
    while(t--){
        cin>>n>>k;
        sum=0;
        for(int i=1;i<=n;i++){
            sum+=quick_mod(i,k);
        }
        cout<<sum%MOD<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值