PTA 天梯赛训练 7-13 肿瘤诊断(30 分)
题目连接
7-13 肿瘤诊断(30 分)
在诊断肿瘤疾病时,计算肿瘤体积是很重要的一环。给定病灶扫描切片中标注出的疑似肿瘤区域,请你计算肿瘤的体积。
输入格式:
输入第一行给出4个正整数:M、N、L、T,其中M和N是每张切片的尺寸(即每张切片是一个M×N的像素矩阵。最大分辨率是1286×128);L(≤60)是切片的张数;T是一个整数阈值(若疑似肿瘤的连通体体积小于T,则该小块忽略不计)。
最后给出L张切片。每张用一个由0和1组成的M×N的矩阵表示,其中1表示疑似肿瘤的像素,0表示正常像素。由于切片厚度可以认为是一个常数,于是我们只要数连通体中1的个数就可以得到体积了。麻烦的是,可能存在多个肿瘤,这时我们只统计那些体积不小于T的。两个像素被认为是“连通的”,如果它们有一个共同的切面,如下图所示,所有6个红色的像素都与蓝色的像素连通。
输出格式:
在一行中输出肿瘤的总体积。
输入样例:
3 4 5 2
1 1 1 1
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1
0 0 1 1
1 0 1 1
0 1 0 0
0 0 0 0
1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0
输出样例:
26
解题思路:
解题思路:
1.内存的优化,把整型的全部换成bool型的
2.深搜容易爆栈,段错误,所以尽量用广搜(而且时间上也是优势)
3.注意有几个方向(6个方向),每个方向怎么控制(nexts数组)
此题相对于复杂的迷宫类搜索还是较水的,有点类似于着色法
#include<bits/stdc++.h>
using namespace std;
struct Node{
int x,y;
int floot;
}node,nodes;
//使用结构体主要是在搜索的时候方便记录
queue<struct Node>q;
bool a[64][1300][130];//下标依次是层数,像素横坐标纵坐标
bool book[64][1300][130];
//nexts数组控制方向
int nexts[6][3]={{1,0,0},{-1,0,0},{0,0,1},{0,0,-1},{0,1,0},{0,-1,0}};
int main(){
int n,m,l,t;
int sum=0;
int num,flag;
cin>>n>>m>>l>>t;
memset(a,0,sizeof(a));
memset(book,0,sizeof(book));
//输入
for(int i=1;i<=l;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
cin>>flag;
if(flag==1){
a[i][j][k]=true;
}
}
}
}
for(int i=1;i<=l;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
num=0;
if(a[i][j][k]==true&&book[i][j][k]==false){
node.x=j;
node.y=k;
node.floot=i;
q.push(node);
book[i][j][k]=true;
num++;
while(!q.empty()){
node=q.front();
q.pop();
for(int f=0;f<6;f++){
int floots=node.floot+nexts[f][0];
int xs=node.x+nexts[f][1];
int ys=node.y+nexts[f][2];
if(a[floots][xs][ys]==true&&book[floots][xs][ys]==false){
nodes.floot=floots;
nodes.x=xs;
nodes.y=ys;
q.push(nodes);
book[floots][xs][ys]=true;
num++;
}
}
}
if(num>=t){
sum+=num;
}
}
}
}
}
cout<<sum<<endl;
return 0;
}