GCD - Extreme (II) (UVA - 11426)欧拉函数

题目链接

一道感觉挺有意思的题,自己想了好久没想出来,最后看了其他人的博客,才发现是这样哦。

如果设f(x)为x和比他小的数的gcd之和 s(n)=f(n)+f(n-1)+......+f(1);

s(n)为所要求计算的C;

f(12)=gcd(1,12)+gcd(2,12)+gcd(3,12)+gcd(4,12)+gcd(5,12)+gcd(6,12)+gcd(7,12)+gcd(8,12)+gcd(9,12)+gcd(10,12)+gcd(11,12)

       =1+2+3+4+1+6+1+4+3+2+1

其中1的数量为phi(12);

其中2的数量为2个,12=2*6.如果gcd(12,x)=2,则12/2和x/2是互素的。而x/2<6 且x/2还和6互素 那x的数量不就是phi(6)嘛。

这样的话f(i*j)+=i*phi(j);计算出所有的i和j就可以算出f(n),然后也就可以算出 s(n);

#include<iostream>
#include<cstring>
using namespace std;
const int maxn=4000010;
long long  euler[maxn]; 
long long  f[maxn];
void getEuler() { 
	memset(euler,0,sizeof(euler)); 
	euler[1] = 1; 
	for(int i = 2;i < maxn;i++) {
		if(!euler[i]) 
			for(int j = i;j < maxn; j += i) { 
				if(!euler[j]) euler[j] = j; 
				euler[j] = euler[j]/i*(i-1); 
			} 
		for(int j=1;j*i<maxn;j++){
			f[j*i]+=j*euler[i];
		}
	}
	for(int i=1;i<maxn;i++){
		f[i]+=f[i-1];
	} 
}
int main()
{
	getEuler();
	int n;
	while(cin>>n,n) cout<<f[n]<<endl;
	return 0;
}


欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数只有1与2互质;φ(3)=2,因为小于等于3的正整数与3互质的数是1和2。 欧拉函数的计算方法有很多,下面介绍两种常见的方法: 1. 分解质因数法 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛法 我们可以使用筛法(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数在数论有很重要的应用,例如RSA算法的安全性就基于欧拉函数的难解性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值