(Z-Score,0-1,稳健标准化RobustScaler, L_p归一化normalizer,小数定标, Logistic)标准化方法的优缺点和适用范围...

文章介绍了几种常见的数据标准化方法,包括Z-Score标准化、0-1标准化、稳健标准化(RobustScaler)、L_p归一化、小数定标标准化和Logistic标准化,分别阐述了它们的优缺点和适用场景,如异常值处理、数据分布要求等。
摘要由CSDN通过智能技术生成

1. Z-Score标准化

对数据系列中的每一个数据点作减去均值并除以方差的操作,使得处理后的数据近似符合(0,1) 的标准正态分布:

xi∗=(xi−μ)/σx_i^*=(x_i-μ)/σ

优点:

1) 计算相对简单,在计算机编程软件中操作方便;

2) 能够消除量级为数据分析带来的不便,不受数据量级的影响,保证了数据间的可比性.

缺点:

1) 计算时需要得到总体的均值及标准差,在数据较多时难以实现,大多数情况下用样本均值及标准差代替,此举会导致分析结果与真实结果之间会存在差异;

2) 极大程度上改变了数据的原始意义,使得只能比较数据之间的关系,导致这种标准化方法的现实意义需要在比较中实现;

3) 对数据的相关性有要求,只有在数据大致符合正态分布时才能得到最佳结果.

适用范围:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值