三种数据标准化方法的对比:StandardScaler、MinMaxScaler、RobustScaler

数据标准化是提升模型精度和加速收敛的关键步骤。本文对比了三种常用方法:StandardScaler(标准差标准化,适用于正态分布数据),MinMaxScaler(极差标准化,适用于分布范围稳定的数据)和RobustScaler(稳健标准化,适用于异常值较多的数据)。StandardScaler通过减去均值除以标准差实现;MinMaxScaler利用最大最小值将数据转换到0-1区间;RobustScaler则基于中位数和四分位距,对异常值不敏感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据标准化 / 归一化的作用

  • 提升模型精度:标准化 / 归一化使不同维度的特征在数值上更具比较性,提高分类器的准确性。
  • 提升收敛速度:对于线性模型,数据归一化使梯度下降过程更加平缓,更易正确的收敛到最优解。

二、标准差标准化 StandardScaler

from sklearn.preprocessing import StandardScaler

使用均值与方差,对服从正态分布的数据处理,得到符合标准正态分布的数据

  • 处理方法:标准化数据减去均值,然后除以标准差,经过处理后数据符合标准正态分布,即均值为0,标准差为1;
  • 转化函数:x = (x-mean) / std;
  • 适用性:适用于本身服从正态分布的数据;
  • Outlier 的影响:基本可用于有outlier的情况,但在计算方差和均值时outliers仍然会影响计算。

参数包括:with_mean, with_std, copy

  • with_mean:布尔型,默认为 True,表示在缩放前将数据居中,当尝试在稀疏矩阵上时,这不起作用(并且会引发异常),因为将它们居中需要构建一个密集矩阵,在常见的用例中,该矩阵可能太大而无法容纳在内存中;
  • with_std:布尔型,默认为True,表示将数据换算成单位方
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值