图片分析系统(三)星像识别

本文探讨了图片分析中的星像识别过程,通过判断像素明度和位置,确定星星区域。在找到高明度像素后,通过设定距离阈值进行像素归类,形成星像区。最后,针对实际照片中的杂点问题,提出了额外的明度判定策略,以去除无效的亮点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片的识别和分析过程是复杂的,虽然我们平时看东西辨识物体只是一瞬间的事,但是完成这一过程实际经过了大脑的大量复杂运算。人类可以用肉眼直接看出图像中的物体“是”什么,归根结底是凭借自身的经验和知识,判断图像中的物体“像”什么。软件也是一样,要想识别就必须具备相应的知识和判断逻辑。
下面以星星照片为例,尝试一下分析照片中的星星。

星像的数量和区域划分
美图秀秀软件能够自动捕捉到照片中的人脸、眼睛等部位,是因为抓住了这些部位的几个重要特征。那么,星星的特征是什么?亮,而且是一种集中的亮,周围都是黑暗的夜空,唯独星星那一小块区域特别亮。
一张由望远镜拍到的星像照片,我们要从中找出星星的位置。
在这里插入图片描述

通常情况,望远镜感光正常,拍到的星星最亮的部分,其像素明度不会低于250,那么我们就先寻找明度大于250的像素。建立二维坐标循环,读取照片中每一个像素的RGB值,计算出明度值,当即判定是否大于250。然后将符合条件像素的坐标、明度值保存在一个新的数组(Array)里。数组命名为pixel,pixel[]里的每一个元素对应一个像素,元素内包含像素的坐标和明度值。
当程序将照片的全部像素判定一遍后,我们得到了一个新的数组,同时也知道了这个数组里有多少元素。知道有多少元素,是否等价于知道照片里有多少星星?当然不是,一个星星可能由十几个高明度像素组成,也可能只有一两个高明度像素,要想知道有多少星星,就必须根据这些像素

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值